E-Assessment using Latent Semantic Analysis
نویسندگان
چکیده
E-assessment is an important component of e-learning and e-qualification. Formative and summative assessment serve different purposes and both types of evaluation are critical to the pedagogical process. While students are studying, practicing, working, or revising, formative assessment provides direction, focus, and guidance. Summative assessment provides the means to evaluate a learner’s achievement and communicate that achievement to interested parties. Latent Semantic Analysis (LSA) is a statistical method for inferring meaning from a text. Applications based on LSA exist that provide both summative and formative assessment of a learner’s work. However, the huge computational needs are a major problem with this promising technique. This paper explains how LSA works, describes the breadth of existing applications using LSA, explains how LSA is particularly suited to e-assessment, and proposes research to exploit the potential computational power of the Grid to overcome one of LSA’s drawbacks.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملE-Assessment Using Latent Semantic Analysis In The Computer Science Domain: A Pilot Study
Latent Semantic Analysis (LSA) is a statistical Natural Language Processing (NLP) technique for inferring meaning from a text. Existing LSA-based applications focus on formative assessment in general domains. The suitability of LSA for summative assessment in the domain of computer science is not well known. The results from the pilot study reported in this paper encourage us to pursue further ...
متن کاملThe Learning Grid and E-Assessment using Latent Semantic Analysis
E-assessment is an important component of e-learning and equalification. Formative and summative assessment serve different purposes and both types of evaluation are critical to the pedagogical process. While students are studying, practicing, working, or revising, formative assessment provides direction, focus, and guidance. Summative assessment provides the means to evaluate a learner’s achie...
متن کامل