Opto-Mechanical and Electronic Design of a Tunnel-Trap Si Radiometer
نویسندگان
چکیده
A transmission-type light-trap silicon radiometer has been developed to hold the NIST spectral power and irradiance responsivity scales between 406 nm and 920 nm. The device is built from replaceable input apertures and tightly packed different-size silicon photodiodes. The photodiodes are positioned in a triangular shape tunnel such that beam clipping is entirely eliminated within an 8 field-of-view (FOV). A light trap is attached to the output of the radiometer to collect the transmitted radiation and to minimize the effect of ambient light. The photodiodes, selected for equal shunt resistance, are connected in parallel. The capacitance and the resultant shunt resistance of the device were measured and frequency compensations were applied in the feedback network of the photocurrent-to-voltage converter to optimize signal-, voltage-, and loop-gain characteristics. The trap radiometer can measure either dc or ac optical radiation with high sensitivity. The noise-equivalent-power of the optimized device is 47 fW in dc mode and 5.2 fW at 10 Hz chopping. The relative deviation from the cosine responsivity in irradiance mode was measured to be equal to or less than 0.02 % within 5° FOV and 0.05 % at 8° FOV. The trap-radiometer can transfer irradiance responsivities with uncertainties comparable to those of primary standard radiometers. Illuminance and irradiance meters, holding the SI units (candela, color- and radiance-temperature), will be calibrated directly against the transfer standard trap-radiometer to obtain improved accuracy in the base-units.
منابع مشابه
OPTIMAL DESIGN OF TUNNEL SUPPORT LINING USING MCBO ALGORITHM
In this paper, a systematic approach is presented for optimal design of tunnel support lining using two-dimensional finite element analysis models of soil-structure interaction developed in ABAQUS software and the Modified Colliding Bodies Optimization (MCBO) algorithm implemented in MATLAB environment. This approach is then employed to study the influence of variable geometrical and geo-mechan...
متن کاملModeling Optical Mem Systems
Optical MEMS have the potential to drastically reduce the size and cost of digital communications and computation systems. However, the multiple technologies (optical, electrical, and mechanical) utilized in optical MEM systems has led to new challenges in the creation of computer aided design tools for these systems. This paper presents a system level opto-electro-mechanical CAD tool, Chatoyan...
متن کاملSemiconducting Nanowire Tunnel Devices
In this thesis innovative tunnel devices based on new architectures, new fabrication approaches and novel material combinations are fabricated and investigated in detail. In particular, nanowire homoand heterojunction tunnel diodes based on Si and InAs-Si have been demonstrated for the rst time. The gained knowledge and understanding of tunnel diodes is applied to design and fabricate InAs-Si h...
متن کاملA Low Cost Numerical Simulation of a Supersonic Wind-tunnel Design
In the present paper, a supersonic wind-tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme to simulate flow-field and detect location of normal shock in the supersonic wind-tunnel. In the Roe scheme, flow conditions at inner and outer sides of cell faces are determined using an upwind biased algorithm. ...
متن کاملProtecting the properties of monolayer MoS₂ on silicon based substrates with an atomically thin buffer.
Semiconducting 2D materials, like transition metal dichalcogenides (TMDs), have gained much attention for their potential in opto-electronic devices, valleytronic schemes, and semi-conducting to metallic phase engineering. However, like graphene and other atomically thin materials, they lose key properties when placed on a substrate like silicon, including quenching of photoluminescence, distor...
متن کامل