Polyamine transport by mammalian cells and mitochondria: role of antizyme and glycosaminoglycans.

نویسندگان

  • Kenji Hoshino
  • Emi Momiyama
  • Kaori Yoshida
  • Kazuhiro Nishimura
  • Shinobu Sakai
  • Toshihiko Toida
  • Keiko Kashiwagi
  • Kazuei Igarashi
چکیده

The role of antizyme (AZ) and glycosaminoglycans in polyamine uptake by mammalian cells and mitochondria was examined using NIH3T3 and FM3A cells and rat liver mitochondria. AZ is synthesized as two isoforms (29 and 24.5 kDa) due to the existence of two initiation codon AUGs in the AZ mRNA. Most AZ existed as the 24.5-kDa form translatable from the second AUG, but a portion of the 29-kDa AZ from the first AUG was associated with mitochondria because of the presence of a mitochondrial targeting signal between the first and the second methionine. The predominance of the 24.5-kDa isoform was mainly due to the presence of spermidine and a favorable sequence context (Kozak sequence) at the second initiation codon AUG. Spermine uptake by NIH3T3 cells was inhibited by both 29- and 24.5-kDa AZs, but uptake by rat liver mitochondria was not influenced by either form of AZ. Because spermine uptake by mitochondria caused a release of cytochrome c, an enhancer of apoptosis, we looked for inhibitors of mitochondrial spermine uptake other than AZ. Cations such as Na+, K+, and Mg2+ were inhibitors of the mitochondrial uptake. It has been reported that heparan sulfate on glypican-1 plays important roles in spermine uptake by human embryonic lung fibroblasts. Heparin, but not heparan sulfate, slightly inhibited spermine uptake by FM3A cells in the absence of Mg2+ and Ca2+ but had no effect under physiological conditions in the presence of Mg2+ and Ca2+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells.

Antizyme, a spermidine-induced protein that binds and stimulates ornithine decarboxylase degradation, is now shown also to mediate the rapid feedback inhibition of polyamine uptake into mammalian cells. Using a cell line (HZ7) transfected with truncated antizyme cDNA, and mutant ornithine decarboxylase cell lines, we demonstrate that this newly discovered action of antizyme is distinct from its...

متن کامل

Regulation of ornithine decarboxylase activity and polyamine transport by agmatine in rat pulmonary artery endothelial cells.

Agmatine, a product of arginine decarboxylation in mammalian cells, is believed to govern cell polyamines by inducing antizyme, which in turn suppresses ornithine decarboxylase (ODC) activity and polyamine uptake. However, since agmatine is structurally similar to the polyamines, it is possible that it exerts antizyme-independent actions on polyamine regulatory pathways. The present study deter...

متن کامل

Unusual aspects of the polyamine transport system affect the design of strategies for use of polyamine analogues in chemotherapy.

One strategy for inhibiting tumour cell growth is the use of polyamine mimetics to depress endogenous polyamine levels and, ideally, obstruct critical polyamine-requiring reactions. Such polyamine analogues make very unusual drugs, in that extremely high intracellular concentrations are required for growth inhibition or cytotoxicity. Cells exposed to even sub-micromolar concentrations of such a...

متن کامل

Antizyme induction by polyamine analogues as a factor of cell growth inhibition.

The polyamines spermidine and spermine and their diamine precursor putrescine are essential for mammalian cell growth and viability, and strategies are sought for reducing polyamine levels in order to inhibit cancer growth. Several structural analogues of the polyamines have been found to decrease natural polyamine levels and inhibit cell growth, probably by stimulating normal feedback mechanis...

متن کامل

The antiproliferative effects of agmatine correlate with the rate of cellular proliferation.

Polyamines are small cationic molecules required for cellular proliferation. Agmatine is a biogenic amine unique in its capacity to arrest proliferation in cell lines by depleting intracellular polyamine levels. We previously demonstrated that agmatine enters mammalian cells via the polyamine transport system. As polyamine transport is positively correlated with the rate of cellular proliferati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 52  شماره 

صفحات  -

تاریخ انتشار 2005