Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA.
نویسندگان
چکیده
Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A-G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. We have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. We also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair.
منابع مشابه
The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence.
The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. We have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a c...
متن کاملBinding and repair of mismatched DNA mediated by Rhp14, the fission yeast homologue of human XPA.
Rhp14 of Schizosaccharomyces pombe is homologous to human XPA and Saccharomyces cerevisiae Rad14, which act in nucleotide excision repair of DNA damages induced by ultraviolet light and chemical agents. Cells with disrupted rhp14 were highly sensitive to ultraviolet light, and epistasis analysis with swi10 (nucleotide excision repair) and rad2 (Uve1-dependent ultraviolet light damage repair pat...
متن کاملPhysical interaction between components of DNA mismatch repair and nucleotide excision repair.
Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as "bait," and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 c...
متن کاملTfb5 interacts with Tfb2 and facilitates nucleotide excision repair in yeast
TFIIH is indispensable for nucleotide excision repair (NER) and RNA polymerase II transcription. Its tenth subunit was recently discovered in yeast as Tfb5. Unlike other TFIIH subunits, Tfb5 is not essential for cell survival. We have analyzed the role of Tfb5 in NER. NER was deficient in the tfb5 deletion mutant cell extracts, and was specifically complemented by purified Tfb5 protein. In cont...
متن کاملStructural insights into the recognition of cisplatin and AAF-dG lesion by Rad14 (XPA).
Nucleotide excision repair (NER) is responsible for the removal of a large variety of structurally diverse DNA lesions. Mutations of the involved proteins cause the xeroderma pigmentosum (XP) cancer predisposition syndrome. Although the general mechanism of the NER process is well studied, the function of the XPA protein, which is of central importance for successful NER, has remained enigmatic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 90 12 شماره
صفحات -
تاریخ انتشار 1993