Conformations of polyaniline molecules adsorbed on Au(111) probed by in situ STM and ex situ XPS and NEXAFS.

نویسندگان

  • YiHui Lee
  • ChinZen Chang
  • ShuehLin Yau
  • LiangJen Fan
  • YawWen Yang
  • LiangYueh Ou Yang
  • Kingo Itaya
چکیده

In situ scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) have been used to examine the conformation of a monolayer of polyaniline (PAN) molecules produced on a Au(111) single-crystal electrode by anodization at 1.0 V [vs reversible hydrogen electrode (RHE)] in 0.10 M H(2)SO(4) containing 0.030 M aniline. The as-produced PAN molecules took on a well-defined linear conformation stretching for 500 A or more, as shown by in situ and ex situ STM. The XPS and NEXAFS results indicated that the linear PAN seen at 1.0 V assumed the form of an emeraldine salt made of PAN chains and (bi)sulfate anions. Shifting the potential from 1.0 to 0.7 V altered the shape of the PAN molecules from straight to crooked, which was ascribed to restructuring of the Au(111) electrified interface on the basis of voltammetric and XPS results. In situ STM showed that further decreasing the potential to 0.5 V transformed the crooked PAN threads into a mostly linear form again, with preferential alignment and formation of some locally ordered structures. PAN molecules could be reduced from emeraldine to leucoemeraldine as the potential was decreased to 0.2 V or less. In situ STM showed that the fully reduced PAN molecules were straight but mysteriously shortened to approximately 50 A in length. The conformation of PAN did not recuperate when the potential was shifted positively to 1.0 V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resolution electrochemical STM: New structural results for underpotentially deposited Cu on Au(111) in acid sulfate solution

Adsorption of sulfate assists Cu monolayer underpotential deposition (upd) on Au(111) in a unique way, rendering two distinct structural stages: (i) formation of a low-density Cu phase at coverage of 2/3 ML known as the ffiffiffi 3 p ffiffiffi 3 p R30 or honeycomb phase; (ii) formation of a complete monolayer, i.e., Cu-(1 · 1) phase pseudomorphic with respect to underlying Au(111) substrate. In...

متن کامل

Surface polymerization of (3,4-ethylenedioxythiophene) probed by in situ scanning tunneling microscopy on Au(111) in ionic liquids.

The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the elect...

متن کامل

Formation of linearly linked Fe clusters on Si(111)-7 × 7-C2H5OH surface

UNLABELLED The Fe atoms were deposited on the Si(111)-7 × 7 surface, which has been saturated with the C2H5OH molecules. Then, the Fe clusters were formed on Si(111)-7 × 7-C2H5OH surface and in situ observed by the scanning tunneling microscopy (STM). The STM images showed that with the increase of Fe clusters, the size of clusters was about 5 nm and they self-assembled in straightly linked cha...

متن کامل

Adsorption and electrochemical activity: an in situ electrochemical scanning tunneling microscopy study of electrode reactions and potential-induced adsorption of porphyrins.

The effect of adsorption on molecular properties and reactivity is a central topic in interfacial physical chemistry. At electrochemical interfaces, adsorbed molecules may lose their electrochemical activity. The absence of in situ probes has hindered our understanding of this phenomenon and electrode reactions in general. In this work, classical electrochemistry and electrochemical scanning tu...

متن کامل

Effect of molecular binding to a semiconductor on metal/molecule/semiconductor junction behavior.

Diodes made by (indirectly) evaporating Au on a monolayer of molecules that are adsorbed chemically onto GaAs, via either disulfide or dicarboxylate groups, show roughly linear but opposite dependence of their effective barrier height on the dipole moment of the molecules. We explain this by Au-molecule (electrical) interactions not only with the exposed end groups of the molecule but also with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 131 18  شماره 

صفحات  -

تاریخ انتشار 2009