Novel mechanisms of endothelial mechanotransduction.
نویسندگان
چکیده
Atherosclerosis is a focal disease that develops preferentially where nonlaminar, disturbed blood flow occurs, such as branches, bifurcations, and curvatures of large arteries. Endothelial cells sense and respond differently to disturbed flow compared with steady laminar flow. Disturbed flow that occurs in so-called atheroprone areas activates proinflammatory and apoptotic signaling, and this results in endothelial dysfunction and leads to subsequent development of atherosclerosis. In contrast, steady laminar flow as atheroprotective flow promotes expression of many anti-inflammatory genes, such as Kruppel-like factor 2 and endothelial nitric oxide synthase and inhibits endothelial inflammation and athrogenesis. Here we will discuss that disturbed flow and steady laminar flow induce pro- and antiatherogenic events via flow type-specific mechanotransduction pathways. We will focus on 5 mechanosensitive pathways: mitogen-activated protein kinases/extracellular signal-regulated kinase 5/Kruppel-like factor 2 signaling, extracellular signal-regulated kinase/peroxisome proliferator-activated receptor signaling, and mechanosignaling pathways involving SUMOylation, protein kinase C-ζ, and p90 ribosomal S6 kinase. We think that clarifying regulation mechanisms between these 2 flow types will provide new insights into therapeutic approaches for the prevention and treatment of atherosclerosis.
منابع مشابه
Physiological and pharmacological role of lysophosphatidic acid as modulator in mechanotransduction.
The mechanotransduction mechanism is believed to play an important role in maintenance of cellular homeostasis in a wide variety of cell types. In particular, the mechanotransduction system in vascular endothelial cells may be an essential mechanism for local hemodynamic control. Elevations in intracellular free Ca2+ concentration ([Ca2]i) are an important signal in the initial step of mechanot...
متن کاملFlow-mediated endothelial mechanotransduction.
Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and th...
متن کاملGlobal architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction.
Uniaxial stretch is an important biophysical regulator of cell morphology (or shape) and functions of vascular endothelial cells (ECs). However, it is unclear whether and how cell shape can independently regulate EC mechanotransductive properties under uniaxial stretch. Herein, utilizing a novel uniaxial cell-stretching device integrated with micropost force sensors, we reported the first exper...
متن کاملMechanotransduction at the basis of endothelial barrier function
Destabilization of cell-cell contacts involved in the maintenance of endothelial barrier function can lead to increased endothelial permeability. This increase in endothelial permeability results in an anarchical movement of fluid, solutes and cells outside the vasculature and into the surrounding tissues, thereby contributing to various diseases such as stroke or pulmonary edema. Thus, a bette...
متن کاملCaveolae: A Role in Endothelial Inflammation and Mechanotransduction?
Vascular inflammation and disease progression, such as atherosclerosis, are in part a consequence of haemodynamic forces generated by changes in blood flow. The haemodynamic forces, such as shear stress or stretch, interact with vascular endothelial cells, which transduce the mechanical stimuli into biochemical signals via mechanosensors, which can induce an upregulation in pathways involved in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 34 11 شماره
صفحات -
تاریخ انتشار 2014