Intermittent hypoxia conditioning protects mitochondrial cytochrome c oxidase of rat cerebellum from ethanol withdrawal stress.
نویسندگان
چکیده
Intermittent hypoxia (IH) conditioning minimizes neurocognitive impairment and stabilizes brain mitochondrial integrity during ethanol withdrawal (EW) in rats, but the mitoprotective mechanism is unclear. We investigated whether IH conditioning protects a key mitochondrial enzyme, cytochrome c oxidase (COX), from EW stress by inhibiting mitochondrially directed apoptotic pathways involving cytochrome c, Bax, or phosphor-P38 (pP38). Male rats completed two cycles of a 4-wk ethanol diet (6.5%) and 3 wk of EW. An IH program consisting of 5-10 bouts of 5-8 min of mild hypoxia (9.5-10% inspired O(2)) and 4 min of reoxygenation for 20 consecutive days began 3 days before the first EW period. For some animals, vitamin E replaced IH conditioning to test the contributions of antioxidant mechanisms to IH's mitoprotection. During the second EW, cerebellar-related motor function was evaluated by measuring latency of fall from a rotating rod (Rotarod test). After the second EW, COX activity in cerebellar mitochondria was measured by spectrophotometry, and COX, cytochrome c, Bax, and pP38 content were analyzed by immunoblot. Mitochondrial protein oxidation was detected by measuring carbonyl contents and by immunochemistry. Earlier IH conditioning prevented motor impairment, COX inactivation, depletion of COX subunit 4, protein carbonylation, and P38 phosphorylation during EW. IH did not prevent cytochrome c depletion during EW, and Bax content was unaffected by EW ± IH. Vitamin E treatment recapitulated IH protection of COX, and P38 inhibition attenuated protein oxidation during EW. Thus IH protects COX and improves cerebellar function during EW by limiting P38-dependent oxidative damage.
منابع مشابه
Methylene blue protects mitochondrial respiration from ethanol withdrawal stress
Methylene blue (MB), a tricyclic phenothiazine drug, has been reported to enhance mitochondrial functions including mitochondrial respiration. By comparison, stress associated with abrupt ethanol withdrawal (EW) impedes mitochondrial functions. We investigated whether MB protects mitochondrial respiration and cell survival from EW stress through a key mitochondrial enzyme, cytochrome c oxidase ...
متن کاملIntermittent hypoxia conditioning prevents behavioral deficit and brain oxidative stress in ethanol-withdrawn rats.
Intermittent hypoxia (IH) has been found to protect brain from ischemic injury. We investigated whether IH mitigates brain oxidative stress and behavioral deficits in rats subjected to ethanol intoxication and abrupt ethanol withdrawal (EW). The effects of IH on overt EW behavioral signs, superoxide generation, protein oxidation, and mitochondrial permeability transition pore (PTP) opening were...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملAlcohol withdrawal and brain injuries: beyond classical mechanisms.
Unmanaged sudden withdrawal from the excessive consumption of alcohol (ethanol) adversely alters neuronal integrity in vulnerable brain regions such as the cerebellum, hippocampus, or cortex. In addition to well known hyperexcitatory neurotransmissions, ethanol withdrawal (EW) provokes the intense generation of reactive oxygen species (ROS) and the activation of stress-responding protein kinase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 112 10 شماره
صفحات -
تاریخ انتشار 2012