Rigorous Upscaling of the Reactive Flow through a Pore, under Dominant Peclet and Damkohler Numbers

نویسندگان

  • Andro Mikelic
  • Vincent M. Devigne
  • C. J. van Duijn
چکیده

In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses a singular perturbation technique. The starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo a first-order reaction at the pore surface. The transport and reaction parameters are such that we have large, dominant Peclet and Damkohler numbers with respect to the ratio of characteristic transversal and longitudinal lengths (the small parameter ε). We give a rigorous mathematical justification of the effective behavior for small ε. Error estimates are presented in the energy norm as well as in L∞ and L1 norms of the space variable. They guarantee the validity of the upscaled model. As a special case, we recover the well-known Taylor dispersion formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore

Laplace transform approach to the rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore‡ Catherine Choquet and Andro Mikelić ∗ Université P. Cézanne, LATP UMR 6632, Faculté des Sciences et Techniques de Saint-Jérôme, 13397 Marseille Cedex 20, FRANCE Université de Lyon, Lyon, F-69003, FRANCE; Université Lyon 1, Institut Camille Jordan, UFR M...

متن کامل

Simulation of dissolution and precipitation in porous media

[1] We apply the lattice-Boltzmann method to simulate fluid flow and dissolution and precipitation in the reactive solid phase in a porous medium. Both convection and diffusion as well as temporal geometrical changes in the pore space are taken into account. The numerical results show that at high Peclet and Peclet-Damkohler numbers, a wormhole is formed and permeability increases greatly becau...

متن کامل

Rigorous upscaling of the infinite adsorption rate reactive flow under dominant Peclet number through a pore

In this paper we present a rigorous derivation of the effective model for enhanced diffusion through a narrow and long 2D pore. The analysis uses the anisotropic singular perturbation technique. Starting point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The solute particles undergo an adsorption process at the lateral tube boundary, wit...

متن کامل

Pore scale analysis of the impact of mixing-induced reaction dependent viscosity variations

Expanding interest in enhanced subsurface natural resource recovery and carbon sequestration motivates study of reacting flows in porous media. In this work, we examine the case of reaction products that increase or decrease the viscosity of the fluid. Parallel reactant streams flow through porous media and react transversely along the centerline. We utilize a pore scale, finite element numeric...

متن کامل

Rigorous upscaling of the reactive flow with finite kinetics and under dominant Péclet number

We consider the evolution of a reactive soluble substance introduced into the Poiseuille flow in a slit channel. The reactive transport happens in presence of dominant Péclet and Damköhler numbers. We suppose Péclet numbers corresponding to Taylor’s dispersion regime. The two main results of the paper are the following. First, using the anisotropic perturbation technique, we derive rigorously a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2006