A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1

نویسندگان

  • Harsh Kavi
  • Xingwu Lu
  • Na Xu
  • Boris A Bartholdy
  • Elena Vershilova
  • Arthur I Skoultchi
  • Dmitry V Fyodorov
چکیده

Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MUTANT SCREEN REPORT A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1

Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and o...

متن کامل

An RNAi-Based Candidate Screen for Modifiers of the CHD1 Chromatin Remodeler and Assembly Factor in Drosophila melanogaster

The conserved chromatin remodeling and assembly factor CHD1 (chromodomains, helicase, DNA-binding domain) is present at active genes where it participates in histone turnover and recycling during transcription. In order to gain a more complete understanding of the mechanism of action of CHD1 during development, we created a novel genetic assay in Drosophila melanogaster to evaluate potential fu...

متن کامل

ACF catalyses chromatosome movements in chromatin fibres.

Nucleosome-remodelling factors containing the ATPase ISWI, such as ACF, render DNA in chromatin accessible by promoting the sliding of histone octamers. Although the ATP-dependent repositioning of mononucleosomes is readily observable in vitro, it is unclear to which extent nucleosomes can be moved in physiological chromatin, where neighbouring nucleosomes, linker histones and the folding of th...

متن کامل

The Drosophila melanogaster CHD1 Chromatin Remodeling Factor Modulates Global Chromosome Structure and Counteracts HP1a and H3K9me2

CHD1 is a conserved chromatin remodeling factor that localizes to active genes and functions in nucleosome assembly and positioning as well as histone turnover. Mouse CHD1 is required for the maintenance of stem cell pluripotency while human CHD1 may function as a tumor suppressor. To investigate the action of CHD1 on higher order chromatin structure in differentiated cells, we examined the con...

متن کامل

The ATP-dependent chromatin remodeler Chd1 is recruited by transcription elongation factors and maintains H3K4me3/H3K36me3 domains at actively transcribed and spliced genes

Chd1 (Chromodomain Helicase DNA Binding Protein 1) is a conserved ATP-dependent chromatin remodeler that maintains the nucleosomal structure of chromatin, but the determinants of its specificity and its impact on gene expression are not well defined. To identify the determinants of Chd1 binding specificity in the yeast genome, we investigated Chd1 occupancy in mutants of several candidate facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015