Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6
نویسندگان
چکیده
The successful colonization of plant growth promoting rhizobacteria (PGPR) in the rhizosphere is an initial and compulsory step in the protection of plants from soil-borne pathogens. Therefore, it is necessary to evaluate the role of root exudates in the colonization of PGPR. Banana root exudates were analyzed by high pressure liquid chromatography (HPLC) which revealed exudates contained several organic acids (OAs) including oxalic, malic and fumaric acid. The chemotactic response and biofilm formation of Bacillus amyloliquefaciens NJN-6 were investigated in response to OA's found in banana root exudates. Furthermore, the transcriptional levels of genes involved in biofilm formation, yqxM and epsD, were evaluated in response to OAs via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results suggested that root exudates containing the OAs both induced the chemotaxis and biofilm formation in NJN-6. In fact, the strongest chemotactic and biofilm response was found when 50 μM of OAs were applied. More specifically, malic acid showed the greatest chemotactic response whereas fumaric acid significantly induced biofilm formation by a 20.7-27.3% increase and therefore biofilm formation genes expression. The results showed banana root exudates, in particular the OAs released, play a crucial role in attracting and initiating PGPR colonization on the host roots.
منابع مشابه
Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats
Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens-B. amyloliquefaciens subsp. plantarum, has recen...
متن کاملGenome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006
Bacillus amyloliquefaciens is an important plant growth-promoting rhizobacterium (PGPR). We report the first whole-genome sequence of PGPR Bacillus amyloliquefaciens evaluated in Colombian banana plants. The genome sequences encode genes involved in plant growth and defense, including bacteriocins, ribosomally synthesized antibacterial peptides, in addition to genes that provide resistance to t...
متن کاملLinking Plant Nutritional Status to Plant-Microbe Interactions
Plants have developed a wide-range of adaptations to overcome nutrient limitation, including changes to the quantity and composition of carbon-containing compounds released by roots. Root-associated bacteria are largely influenced by these compounds which can be perceived as signals or substrates. Here, we evaluate the effect of root exudates collected from maize plants grown under nitrogen (N)...
متن کاملManipulating the banana rhizosphere microbiome for biological control of Panama disease
Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess th...
متن کاملBacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42
Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to A...
متن کامل