Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications.

نویسندگان

  • Mehulkumar Patel
  • Wenchun Feng
  • Keerthi Savaram
  • M Reza Khoshi
  • Ruiming Huang
  • Jing Sun
  • Emann Rabie
  • Carol Flach
  • Richard Mendelsohn
  • Eric Garfunkel
  • Huixin He
چکیده

The unique properties of a holey graphene sheet, referred to as a graphene sheet with nanoholes in its basal plane, lead to wide range of applications that cannot be achieved by its nonporous counterpart. However, the large-scale solution-based production requires graphene oxide (GO) or reduced GO (rGO) as the starting materials, which take hours to days for fabrication. Here, an unexpected discovery that GO with or without holes can be controllably, directly, and rapidly (tens of seconds) fabricated from graphite powder via a one-step-one-pot microwave assisted reaction with a production yield of 120 wt% of graphite is reported. Furthermore, a fast and low temperature approach is developed for simultaneous nitrogen (N) doping and reduction of GO sheets. The N-doped holey rGO sheets demonstrate remarkable electrocatalytic capabilities for the electrochemical oxygen reduction reaction. The existence of the nanoholes provides a "short cut" for efficient mass transport and dramatically increases edges and surface area, therefore, creates more catalytic centers. The capability of rapid fabrication and N-doping as well as reduction of holey GO can lead to development of an efficient catalyst that can replace previous coin metals for energy generation and storage, such as fuel cells and metal-air batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction.

Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m(2) g(-1)) composed of nitrogen doped (...

متن کامل

One-pot solvothermal synthesis of ZnSe·xN2H4/GS and ZnSe/N-GS and enhanced visible-light photocatalysis.

Doped-graphene has attracted considerable attention in many fields because doping element can alter the electrical properties of graphene. In this paper, we synthesized ZnSe·xN2H4/graphene (ZnSe·xN2H4/GS) and ZnSe/nitrogen-doped graphene (ZnSe/N-GS) nanocomposites with p-n junctions via one-pot solvothermal process. The structure, morphologies and catalytic performance of the ZnSe·xN2H4/GS and ...

متن کامل

A hybrid of holey graphene and Mn3O4 and its oxygen reduction reaction performance.

A hybrid of holey graphene and Mn3O4 is prepared by a one-step process, in which the formation of a holey structure is accompanied with Mn3O4 nanoparticles through a high temperature reaction between graphene oxide sheets and KMnO4. Holey graphene and Mn3O4 collaboratively attributed to the enhanced catalytic activity and efficiency towards the oxygen reduction reaction.

متن کامل

Micro-wave synthesis of co-doped transition metal oxides anchored on reduced graphene oxide and their implementation as catalysts for water oxidation

Artificial photosynthesis is a very attractive and a desirable way to solve the rising energy demand. In order to harvest energy directly from sunlight catalyst for oxygen reduction and evolution reaction are at the core of key renewable-energy technologies including fuel cells and water splitting. Herein, tungsten oxide-reduced graphene oxide (WO3-rGO), cobalt oxidereduced graphene oxide (Co3O...

متن کامل

Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 11 27  شماره 

صفحات  -

تاریخ انتشار 2015