A Generalization of the Source Unfolding of Convex Polyhedra

نویسندگان

  • Erik D. Demaine
  • Anna Lubiw
چکیده

We present a new method for unfolding a convex polyhedron into one piece without overlap, based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method of Itoh, O’Rourke, and Vı̂lcu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-Unfolding Medial Axis Polyhedra

It is shown that a convex medial axis polyhedron has two distinct edge unfoldings: cuttings along edges that unfold the surface to a simple planar polygon. One of these unfoldings is a generalization of the point source unfolding, and is easily established to avoid overlap. The other is a novel unfolding that requires a more complex argument to establish nonoverlap, and might generalize.

متن کامل

Continuous Blooming of Convex Polyhedra

We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.

متن کامل

Metric Combinatorics of Convex Polyhedra: Cut Loci and Nonoverlapping Unfoldings

Let S be the boundary of a convex polytope of dimension d + 1, or more generally let S be a convex polyhedral pseudomanifold. We prove that S has a polyhedral nonoverlapping unfolding into R, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source ...

متن کامل

Unfolding and Reconstructing Polyhedra

This thesis covers work on two topics: unfolding polyhedra into the plane and reconstructing polyhedra from partial information. For each topic, we describe previous work in the area and present an array of new research and results. Our work on unfolding is motivated by the problem of characterizing precisely when overlaps will occur when a polyhedron is cut along edges and unfolded. By contras...

متن کامل

Zipper Unfolding of Domes and Prismoids

We study Hamiltonian unfolding—cutting a convex polyhedron along a Hamiltonian path of edges to unfold it without overlap—of two classes of polyhedra. Such unfoldings could be implemented by a single zipper, so they are also known as zipper edge unfoldings. First we consider domes, which are simple convex polyhedra. We find a family of domes whose graphs are Hamiltonian, yet any Hamiltonian unf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011