Interaction among Gsk-3, Gbp, Axin, and APC in Xenopus Axis Specification

نویسندگان

  • Gist H. Farr
  • Denise M. Ferkey
  • Cynthia Yost
  • Sarah B. Pierce
  • Carole Weaver
  • David Kimelman
چکیده

Glycogen synthase kinase 3 (GSK-3) is a constitutively active kinase that negatively regulates its substrates, one of which is beta-catenin, a downstream effector of the Wnt signaling pathway that is required for dorsal-ventral axis specification in the Xenopus embryo. GSK-3 activity is regulated through the opposing activities of multiple proteins. Axin, GSK-3, and beta-catenin form a complex that promotes the GSK-3-mediated phosphorylation and subsequent degradation of beta-catenin. Adenomatous polyposis coli (APC) joins the complex and downregulates beta-catenin in mammalian cells, but its role in Xenopus is less clear. In contrast, GBP, which is required for axis formation in Xenopus, binds and inhibits GSK-3. We show here that GSK-3 binding protein (GBP) inhibits GSK-3, in part, by preventing Axin from binding GSK-3. Similarly, we present evidence that a dominant-negative GSK-3 mutant, which causes the same effects as GBP, keeps endogenous GSK-3 from binding to Axin. We show that GBP also functions by preventing the GSK-3-mediated phosphorylation of a protein substrate without eliminating its catalytic activity. Finally, we show that the previously demonstrated axis-inducing property of overexpressed APC is attributable to its ability to stabilize cytoplasmic beta-catenin levels, demonstrating that APC is impinging upon the canonical Wnt pathway in this model system. These results contribute to our growing understanding of how GSK-3 regulation in the early embryo leads to regional differences in beta-catenin levels and establishment of the dorsal axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenopus axin interacts with glycogen synthase kinase-3 beta and is expressed in the anterior midbrain

Axin is encoded by the fused locus in mice and is required for normal vertebrate axis formation. It has recently been shown that axin associates with APC, beta-catenin and glycogen synthase kinase-3 (GSK-3) in a complex that appears to regulate the level of cytoplasmic beta-catenin. We have identified the Xenopus homologue of axin through its interaction with GSK-3b. Xenopus axin (Xaxin) is exp...

متن کامل

Inhibition of the Wnt signaling pathway by the PR61 subunit of protein phosphatase 2A.

Axin, a negative regulator of the Wnt signaling pathway, forms a complex with glycogen synthase kinase-3beta (GSK-3beta), beta-catenin, adenomatous polyposis coli (APC) gene product, and Dvl, and it regulates GSK-3beta-dependent phosphorylation in the complex and the stability of beta-catenin. Using yeast two-hybrid screening, we found that regulatory subunits of protein phosphatase 2A, PR61bet...

متن کامل

GBP, an Inhibitor of GSK-3, Is Implicated in Xenopus Development and Oncogenesis

Dorsal accumulation of beta-catenin in early Xenopus embryos is required for body axis formation. Recent evidence indicates that beta-catenin is dorsally stabilized by the localized inhibition of the kinase Xgsk-3, utilizing a novel Wnt ligand-independent mechanism. Using a two-hybrid screen, we identified GBP, a maternal Xgsk-3-binding protein that is homologous to a T cell protooncogene in th...

متن کامل

Physiological regulation of β-catenin stability by Tcf3 and CK1ε

The wnt pathway regulates the steady state level of beta-catenin, a transcriptional coactivator for the Tcf3/Lef1 family of DNA binding proteins. We demonstrate that Tcf3 can inhibit beta-catenin turnover via its competition with axin and adenomatous polyposis for beta-catenin binding. A mutant of beta-catenin that cannot bind Tcf3 is degraded faster than the wild-type protein in Xenopus embryo...

متن کامل

Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain.

Axin is a negative regulator of embryonic axis formation in vertebrates, which acts through a Wnt signal transduction pathway involving the serine/threonine kinase GSK-3 and beta-catenin. Axin has been shown to have distinct binding sites for GSK-3 and beta-catenin and to promote the phosphorylation of beta-catenin and its consequent degradation. This provides an explanation for the ability of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2000