Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus.

نویسندگان

  • R Poupot
  • E Martinez-Romero
  • J C Promé
چکیده

Phaseolus vulgaris (common bean) can be nodulated by several Rhizobium species. Among them, Rhizobium tropici has a relatively broad host range, as it is able to infect beans, Leucaena trees, and several other legumes. This work describes the isolation and the characterization of extracellular factors (Nod factors) whose production from R. tropici was triggered by the transcriptional activation of its nod genes. These factors consist of a chitopentaose backbone in which the N-acetyl group of the nonreducing end glucosaminyl residue is replaced by an N-methyl-N-vaccenoyl one. Some of these molecules are sulfated on position 6 of the terminal reducing glucosamine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rhizobium tropici nodulation factor sulfation is limited by the quantity of activated form of sulfate.

Rhizobium tropici is a broad host-range symbiont of Phaseolus vulgaris. This bacterium produces a mixture of sulfated and non-sulfated N-methylated pentameric nodulation (Nod) factors. To understand the genetic bases of the partial sulfation of R. tropici Nod factors, which might be involved in the broad host-range of this species, we introduced in R. tropici CFN299 the recombinant plasmid pGMI...

متن کامل

Sulfation of nod factors via nodHPQ is nodD independent in Rhizobium tropici CIAT899.

A cosmid from the Rhizobium tropici CIAT899 symbiotic plasmid, containing most of the nodulation genes described in this strain, has been isolated. Although this cosmid does not carry a nodD gene, it confers ability to heterologous Rhizobium spp. to nodulate R. tropici hosts (Phaseolus vulgaris, Macroptilium atropurpureum, and Leucaena leucocephala). The observed phenotype is due to constitutiv...

متن کامل

Rhizobial NodL O-acetyl transferase and NodS N-methyl transferase functionally interfere in production of modified Nod factors.

The products of the rhizobial nodulation genes are involved in the biosynthesis of lipochitin oligosaccharides (LCOs), which are host-specific signal molecules required for nodule formation. The presence of an O-acetyl group on C-6 of the nonreducing N-acetylglucosamine residue of LCOs is due to the enzymatic activity of NodL. Here we show that transfer of the nodL gene into four rhizobial spec...

متن کامل

Genes essential for nod factor production and nodulation are located on a symbiotic amplicon (AMPRtrCFN299pc60) in Rhizobium tropici.

Amplifiable DNA regions (amplicons) have been identified in the genome of Rhizobium etli. Here we report the isolation and molecular characterization of a symbiotic amplicon of Rhizobium tropici. To search for symbiotic amplicons, a cartridge containing a kanamycin resistance marker that responds to gene dosage and conditional origins of replication and transfer was inserted in the nodulation r...

متن کامل

Phaseolus vulgaris recognizes Azorhizobium caulinodans Nod factors with a variety of chemical substituents.

Phaseolus vulgaris is a promiscuous host plant that can be nodulated by many different rhizobia representing a wide spectrum of Nod factors. In this study, we introduced the Rhizobium tropici CFN299 Nod factor sulfation genes nodHPQ into Azorhizobium caulinodans. The A. caulinodans transconjugants produce Nod factors that are mostly if not all sulfated and often with an arabinosyl residue as th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 32 39  شماره 

صفحات  -

تاریخ انتشار 1993