Nordhaus-Gaddum bounds for locating domination

نویسندگان

  • M. Carmen Hernando
  • Mercè Mora
  • Ignacio M. Pelayo
چکیده

A dominating set S of graph G is called metric-locating-dominating if it is also locating, that is, if every vertex v is uniquely determined by its vector of distances to the vertices in S . If moreover, every vertex v not in S is also uniquely determined by the set of neighbors of v belonging to S , then it is said to be locating-dominating. Locating, metric-locating-dominating and locatingdominating sets of minimum cardinality are called β-codes, η-codes and λ-codes, respectively. A Nordhaus-Gaddum bound is a tight lower or upper bound on the sum or product of a parameter of a graph G and its complement G. In this paper, we present some Nordhaus-Gaddum bounds for the location number β, the metric-location-domination number η and the location-domination number λ. Moreover, in each case, the graph family attaining the corresponding bound is fully characterized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nordhaus-Gaddum inequalities for domination in graphs

A node in a graph G = (V,E) is said to dominate itself and all nodes adjacent to it. A set S C V is a dominating set for G if each node in V is dominated by some node in S and is a double dominating set for G if each node in V is dominated by at least two nodes in S. First we give a brief survey of Nordhaus-Gaddum results for several domination-related parameters. Then we present new inequaliti...

متن کامل

Nordhaus-Gaddum bounds for independent domination

We establish sharp bounds on the sum and product of the independent domination numbers of a graph and its complement.

متن کامل

Nordhaus-Gaddum Type Results for Total Domination

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s, s), and γt is the total domination number. We show that the maximum value of the sum of the total domination numbers of...

متن کامل

Edge Domination in Intuitionistic Fuzzy Graphs

In this paper we introduce the concept of edge domination and total edge domination in intuitionistic fuzzy graphs. We determine the edge domination number and total edge domination number for several classes of intuitionistic fuzzy graphs and obtain bounds for them. We also obtain Nordhaus gaddum type results for the parameters.

متن کامل

Nordhaus-Gaddum results for weakly convex domination number of a graph

Nordhaus-Gaddum results for weakly convex domination number of a graph G are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014