Maternal docosahexaenoic acid-enriched diet prevents neonatal brain injury.
نویسندگان
چکیده
Hypoxic-ischemic encephalopathy due to neonatal asphyxia is one of the most important causes of delayed neurological development. Prolonged neuronal apoptosis plays an important role in the processes contributing to neuronal degeneration. Docosahexaenoic acid (DHA), a major component of brain membrane phospholipids, prevents neuronal cell apoptosis and plays an important role as an anti-oxidant agent. We investigated the neuroprotective and anti-oxidant effects of maternal DHA supplementation during pregnancy in a model of neonatal hypoxic-ischemic encephalopathy. Pregnant rats were randomly assigned to two experimental groups: a control group or a DHA-enriched diet group. Hypoxic-ischemic encephalopathy was produced by left common carotid artery occlusion and exposure to 8% oxygen for 1.5 h. TUNEL assay, immunohistochemistry for caspase-3 and 8-hydroxy-deoxyguanosine (8-OHdG), and Western blot for caspase-3 were performed at postnatal days 8, 10 and 14. Fatty acid composition of brain was estimated on postnatal day 7. Maternal diet clearly influenced brain fatty acid composition in pups. Numbers of apoptotic neuronal cells and 8-OHdG immunoreactivity were significantly decreased in the DHA-enriched group. Our findings indicate that maternal DHA-enriched diet during pregnancy provides neuroprotection by inhibiting oxidative stress and apoptotic neuronal death. Dietary supplementation of DHA during pregnancy may thus be beneficial in preventing neonatal brain injury.
منابع مشابه
Maternal parity and diet (n-3) polyunsaturated fatty acid concentration influence accretion of brain phospholipid docosahexaenoic acid in developing rats.
The long-chain PUFA, docosahexaenoic acid [22:6(n-3), DHA], a major component of neuronal membrane phospholipids, accumulates in brain during late prenatal and early neonatal development and is essential for optimal attentional and cognitive function. Because all nutrition is supplied to the developing fetus/neonate by the mother and maternal DHA status is affected by parity, this study examine...
متن کاملMaternal dietary docosahexaenoic acid supplementation attenuates fetal growth restriction and enhances pulmonary function in a newborn mouse model of perinatal inflammation.
The preterm infant is often exposed to maternal and neonatal inflammatory stimuli and is born with immature lungs, resulting in a need for oxygen therapy. Nutritional intervention with docosahexaenoic acid (DHA; 6.3 g/kg of diet) has been shown to attenuate inflammation in various human diseases. Previous studies demonstrated that maternal DHA supplementation during late gestation and lactation...
متن کاملBasic Sciences Accumulation of Dietary Docosahexaenoic Acid in the Brain Attenuates Acute Immune Response and Development of Postischemic Neuronal Damage
Background and Purpose—Consumption of fish has been shown to reduce risk of coronary heart disease and, possibly, of ischemic stroke. Because docosahexaenoic acid (DHA) is the most likely neuroactive component within fish oil, we hypothesized that exposing mice to a DHA-enriched diet may reduce inflammation and protect neurons against ischemic injury. Methods—To visualize the effects of DHA on ...
متن کاملLong-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats.
Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning...
متن کاملAccumulation of dietary docosahexaenoic acid in the brain attenuates acute immune response and development of postischemic neuronal damage.
BACKGROUND AND PURPOSE Consumption of fish has been shown to reduce risk of coronary heart disease and, possibly, of ischemic stroke. Because docosahexaenoic acid (DHA) is the most likely neuroactive component within fish oil, we hypothesized that exposing mice to a DHA-enriched diet may reduce inflammation and protect neurons against ischemic injury. METHODS To visualize the effects of DHA o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropathology : official journal of the Japanese Society of Neuropathology
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2010