IFN-γ-induced priming maintains long-term strain-transcending immunity against blood-stage Plasmodium chabaudi malaria.
نویسندگان
چکیده
The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.
منابع مشابه
Induction of strain-transcending immunity against Plasmodium chabaudi adami malaria with a multiepitope DNA vaccine.
A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with ...
متن کاملDendritic cells induce immunity and long-lasting protection against blood-stage malaria despite an in vitro parasite-induced maturation defect.
Dendritic cells (DC) suffer a maturation defect following interaction with erythrocytes infected with malaria parasites and become unable to induce protective malaria liver-stage immunity. Here we show that, by contrast, maturation-arrested DC in vitro are capable of the successful induction of antigen-specific gamma interferon (IFN-gamma) and interleukin 4 (IL-4) T-cell responses, antibody res...
متن کاملBlood-stage immunity to Plasmodium chabaudi malaria following chemoprophylaxis and sporozoite immunization
Protection against malaria in humans can be achieved by repeated exposure to infected mosquito bites during prophylactic chloroquine treatment (chemoprophylaxis and sporozoites (CPS)). We established a new mouse model of CPS immunization to investigate the stage and strain-specificity of malaria immunity. Immunization with Plasmodium chabaudi by mosquito bite under chloroquine cover does not ge...
متن کاملMixed strain infections and strain-specific protective immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi in mice.
Important to malaria vaccine design is the phenomenon of "strain-specific" immunity. Using an accurate and sensitive assay of parasite genotype, real-time quantitative PCR, we have investigated protective immunity against mixed infections of genetically distinct cloned "strains" of the rodent malaria parasite Plasmodium chabaudi chabaudi in mice. Four strains of P. c. chabaudi, AS, AJ, AQ, and ...
متن کاملRecombinant viral-vectored vaccines expressing Plasmodium chabaudi AS apical membrane antigen 1: mechanisms of vaccine-induced blood-stage protection.
Apical membrane Ag 1 (AMA1) is one of the leading candidate Ags for inclusion in a subunit vaccine against blood-stage malaria. However, the efficacy of Ab-inducing recombinant AMA1 protein vaccines in phase IIa/b clinical trials remains disappointing. In this article, we describe the development of recombinant human adenovirus serotype 5 and modified vaccinia virus Ankara vectors encoding AMA1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 191 10 شماره
صفحات -
تاریخ انتشار 2013