Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons.

نویسندگان

  • T Mittmann
  • C Alzheimer
چکیده

Muscarinic modulation of persistent Na+ current (INaP) was studied using whole cell recordings from acutely isolated pyramidal cells of rat neocortex. After suppression of Ca2+ and K+ currents, INaP was evoked by slow depolarizing voltage ramps or by long depolarizing voltage steps. The cholinergic agonist, carbachol, produced an atropine-sensitive decrease of INaP at all potentials. When applied at a saturating concentration (20 microM), carbachol reduced peak INaP by 38% on average. Carbachol did not alter the voltage dependence of INaP activation nor did it interfere with the slow inactivation of INaP. Our data indicate that INaP can be targeted by the rich cholinergic innervation of the neocortex. Because INaP is activated in the subthreshold voltage range, cholinergic inhibition of this current would be particularly suited to modulate the electrical behavior of neocortical pyramidal cells below and near firing threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAPID COMMUNICATION Muscarinic Inhibition of Persistent Na Current in Rat Neocortical Pyramidal Neurons

Mittmann, Thomas and Christian Alzheimer. Muscarinic inhibibuffered oxygenated saline solution containing 19 U/ml papain. Whole cell currents were evoked and recorded using an Axopatch tion of persistent Na current in rat neocortical pyramidal neurons. J. Neurophysiol. 79: 1579–1582, 1998. Muscarinic modulation of 200 amplifier in conjunction with a TL-1 interface and pClamp 6.0 software (all f...

متن کامل

Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors.

The neuromodulator acetylcholine (ACh) shapes neocortical function during sensory perception, motor control, arousal, attention, learning, and memory. Here we investigate the mechanisms by which ACh affects neocortical pyramidal neurons in adult mice. Stimulation of cholinergic axons activated muscarinic and nicotinic ACh receptors on pyramidal neurons in all cortical layers and in multiple cor...

متن کامل

Inhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate.

The actions of the antiepileptic drug topiramate (TPM) on Na+ currents were assessed using whole-cell patch-clamp recordings in dissociated neocortical neurons and intracellular recordings in neocortical slices. Relatively low TPM concentrations (25-30 microM) slightly inhibited the persistent fraction of Na+ current in dissociated neurons and reduced the Na+-dependent long-lasting action poten...

متن کامل

Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.

The cannabinoid receptor CB1 is found in abundance in brain neurons, whereas CB2 is essentially expressed outside the brain. In the neocortex, CB1 is observed predominantly on large cholecystokinin (CCK)-expressing interneurons. However, physiological evidence suggests that functional CB1 are present on other neocortical neuronal types. We investigated the expression of CB1 and CB2 in identifie...

متن کامل

Modification of Current Transmitted From Apical Dendrite to Soma by Blockade of Voltage- and Ca-Dependent Conductances in Rat Neocortical Pyramidal Neurons

Schwindt, Peter C. and Wayne E. Crill. Modification of current served two types of responses in the soma: spike responses transmitted from apical dendrite to soma by blockade of voltageand during the onset of the iontophoresis, and a subsequent Ca-dependent conductances in rat neocortical pyramidal neurons. graded, tonic current (Schwindt and Crill 1995–1997). We J. Neurophysiol. 78: 187–198, 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 79 3  شماره 

صفحات  -

تاریخ انتشار 1998