The Feasibility of Interference Alignment for Reverse TDD Systems in MIMO Cellular Networks

نویسندگان

  • Kiyeon Kim
  • Sang-Woon Jeon
  • Janghoon Yang
  • Dong Ku Kim
چکیده

The feasibility conditions of interference alignment (IA) are analyzed for reverse TDD systems, i.e., one cell operates as downlink (DL) but the other cell operates as uplink (UL). Under general multiple-input and multiple-output (MIMO) antenna configurations, a necessary condition and a sufficient condition for one-shot linear IA are established, i.e., linear IA without symbol or time extension. In several example networks, optimal sum degrees of freedom (DoF) is characterized by the derived necessary condition and sufficient condition. For symmetric DoF within each cell, a sufficient condition is established in a more compact expression, which yields the necessary and sufficient condition for a class of symmetric DoF. An iterative construction of transmit and received beamforming vectors is further proposed, which provides a specific beamforming design satisfying one-shot IA. Simulation results demonstrate that the proposed IA not only achieve lager DoF but also significantly improve the sum rate in the practical signal-to-noise ratio (SNR) regime.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Optimal MMSE Transceiver Design for IoT-oriented Cognitive Radio Systems

This paper studies interference alignment scheme and minimum mean square error (MMSE) improvement in Internet of Things (IoT)-oriented cognitive systems, where IoT devices share the licensed spectrum by cognitive radio in spectrum underlay. Target to manage the inter-tier interference caused by cognitive spectrum sharing as well as ensure an MMSE at receivers, the interference alignment algorit...

متن کامل

System Level Impact of Non-reciprocal Interference in Adaptive MIMO-OFDM Cellular Systems

In a time-division-duple (TDD) communication system, the channel knowledge can be obtained at the transmitter due to channel reciprocity and used to increase the spectral efficiency of a multiple-input multiple-output (MIMO) communications. However, the interference structure between transmission directions does not necessarily correlate. The obtained quality of service at the receiver may diff...

متن کامل

Design of Orthogonal Uplink Pilot Sequences for TDD Massive MIMO under Pilot Contamination

—Massive MIMO has been acknowledged as a promising technology to counter the demand for higher data capacity for wireless networks in 2020 and beyond. However, each Base Station (BS) requires good enough knowledge of Channel State Information (CSI) on both the uplink and the downlink as massive MIMO relies on spatial multiplexing. In Time Division Duplex (TDD) massive MIMO systems, this CSI is...

متن کامل

Relay-Aided MIMO Cellular Networks Using Opposite Directional Interference Alignment

In this paper, we propose an interference alignment (IA) scheme for the multiple-input multipleoutput (MIMO) uplink cellular network with the help of a relay which operates in half-duplex mode. The proposed scheme only requires global channel state information (CSI) knowledge at the relay, with no transmitter beamforming and time extension at the user equipment (UE), which differs from conventi...

متن کامل

Interference Alignment-based Precoding and User Selection with Limited Feedback in Two-cell Downlink Multi-user MIMO Systems

Interference alignment (IA) is a new approach to address interference in modern multiple-input multiple-out (MIMO) cellular networks in which interference is an important factor that limits the system throughput. System throughput in most IA implementation schemes is significantly improved only with perfect channel state information and in a high signal-to-noise ratio (SNR) region. Designing a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1410.4624  شماره 

صفحات  -

تاریخ انتشار 2014