Combining kernel estimators in the uniform deconvolution problem
نویسنده
چکیده
We construct a density estimator and an estimator of the distribution function in the uniform deconvolution model. The estimators are based on inversion formulas and kernel estimators of the density of the observations and its derivative. Asymptotic normality and the asymptotic biases are derived. AMS classification: primary 62G05; secondary 62E20, 62G07, 62G20
منابع مشابه
Density estimation in the uniform deconvolution model
We consider the problem of estimating a probability density function based on data that are corrupted by noise from a uniform distribution. The (nonparametric) maximum likelihood estimator for the corresponding distribution function is well defined. For the density function this is not the case. We study two nonparametric estimators for this density. The first is a type of kernel density estima...
متن کاملAdaptive Wavelet Estimator for Nonparametricdensity Deconvolution
Hence the problem of estimating g in (1.2) is called a deconvolution problem. The problem arises in many applications [see, e.g., Desouza (1991), Louis (1991), Zhang (1992)] and, therefore, it was studied extensively in the last decade. The most popular approach to the problem was to estimate p x by a kernel estimator and then solve equation (1.2) using a Fourier transform [see Carroll and Hall...
متن کاملAsymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملAsymptotic Normality of Nonparametric Kernel Type Deconvolution Density Estimators: crossing the Cauchy boundary
We derive asymptotic normality of kernel type deconvolution density estimators. In particular we consider deconvolution problems where the known component of the convolution has a symmetric λ-stable distribution, 0 < λ ≤ 2. It turns out that the limit behavior changes if the exponent parameter λ passes the value one, the case of Cauchy deconvolution. AMS classification: primary 62G05; secondary...
متن کاملAn alternative view of the deconvolution problem
The deconvolution kernel density estimator is a popular technique for solving the deconvolution problem, where the goal is to estimate a density from a sample of contaminated observations. Although this estimator is optimal, it suffers from two major drawbacks: it converges at very slow rates (inherent to the deconvolution problem) and can only be calculated when the density of the errors is co...
متن کامل