A Transient Enhancement Method for Two-Stage Helicopter Gearbox Fault Diagnosis Based on ALE

نویسندگان

  • Xiange Tian
  • Tie Wang
  • Zhi Chen
  • Fengshou Gu
  • Andrew Ball
چکیده

Periodical impulse component is one of typical fault characteristics in vibration signals from rotating machinery. However, this component is very small in the early stage of the fault and masked by various noises such as gear meshing components modulated by shaft frequency, which make it difficult to extract accurately for fault detection. The adaptive line enhancer (ALE) is an effective technique for separating sinusoidals from broad-band components of an input signal for detecting the presence of sinusoids in white noise. In this paper, ALE is explored to suppress the periodical gear meshing frequencies and enhance the fault feature impulses for more accurate fault diagnosis. The results obtained from simulated and experimental vibration signals of a two stage helical gearbox prove that the ALE method is very effective in reducing the periodical gear meshing noise and making the impulses in vibration very clear in the time-frequency analysis. The results show a clear difference between the baseline and 30% tooth damage of a helical gear which has not been detected successfully in author’s previous studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

A Model-Based Reasoning Approach to System Fault Diagnosis

This paper presents a novel model abstraction and representation approach for the application of model-based reasoning (MBR) to helicopter powertrain diagnostics. Although the basic principles of MBR are well understood, its application to specific domains, especially in mechanical systems, has been restricted due to insufficient model fidelity. The traditional vibration analysis approach has b...

متن کامل

Fault diagnosis of gearboxes using LSSVM and WPT

This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...

متن کامل

Study on BSS Algorithm used on Fault Diagnosis of Gearbox

The gearbox is a complicated rotating machinery equipment, in order to realize the gearbox fault early detection and prevention, it is the key to carry out the online diagnosis. This paper used the adaptive variable step-length natural gradient blind source separation algorithm to realize the helicopter gearbox meshing vibration signal and fault vibration signal effective separation. Through th...

متن کامل

Using PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes

A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013