Montmorillonite functionalized with pralidoxime as a material for chemical protection against organophosphorous compounds.

نویسندگان

  • Lev Bromberg
  • Christine M Straut
  • Andrea Centrone
  • Eugene Wilusz
  • T Alan Hatton
چکیده

Montmorillonite K-10 functionalized with α-nucleophilic 2-pralidoxime (PAM) and its zwitterionic oximate form (PAMNa) is introduced as a versatile material for chemical protection against organophosphorous (OP) compounds such as pesticides and chemical warfare agents (CWA). Upon inclusion into the montmorillonite interlayer structure, the pyridinium group of PAMNa is strongly physisorbed onto acidic sites of the clay, leading to shrinking of the interplanar distance. Degradation of diethyl parathion by PAMNa-functionalized montmorillonite in aqueous-acetonitrile solutions occurred primarily via hydrolytic conversion of parathion into diethylthio phosphoric acid, with the initial stages of hydrolysis observed to be pseudo-first-order reactions. Hydrolysis catalyzed by the clay intercalated by PAMNa was 10- and 17-fold more rapid than corresponding spontaneous processes measured at 25 and 70 °C, respectively. Hydrolytic degradation of diisopropyl fluorophosphate (DFP), a CWA simulant, was studied on montmorillonite clay functionalized by PAMNa and equilibrated with water vapor at 100% relative humidity by ³¹P high-resolution magic angle spinning NMR and was observed to be rather facile compared with the untreated montmorillonite, which did not show any DFP hydrolysis within 24 h. The incorporation of the functionalized clay particles into elastomeric film of polyisobutylene was shown to be a means to impart DFP-degrading capability to the film, with clay particle content exceeding 18 wt %.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Advances in the Treatment of Organophosphorous Poisonings

Organophosphorous compounds have been employed as pesticides and chemical warfare nerve agents. Toxicity of organophosphorous compounds is a result of excessive cholinergic stimulation through inhibition of acetyl cholinesterase. Clinical manifestations include cholinergic syndromes, central nervous system and cardiovascular disorders. Organophosphorous pesticide poisonings are common in develo...

متن کامل

Recent Advances in the Treatment of Organophosphorous Poisonings

Organophosphorous compounds have been employed as pesticides and chemical warfare nerve agents. Toxicity of organophosphorous compounds is a result of excessive cholinergic stimulation through inhibition of acetyl cholinesterase. Clinical manifestations include cholinergic syndromes, central nervous system and cardiovascular disorders. Organophosphorous pesticide poisonings are common in develo...

متن کامل

Computational Design, Molecular Docking Study and Toxicity Prediction of Some Novel Pralidoxime Derivatives as reactivators of acetyl cholinesterase enzyme

Abstract Background & Objective: oximes as Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate compounds (OPCs) intoxication. Oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. Organophosphorus compounds (OPCs) such as soman, sarin, or VX react with acetyl cholinesterase irreversibly. In this research, a group o...

متن کامل

Recent Advances In Treatment of Acute Organophosphorous Nerve Agents Poisoning

Organophosphorous (OP) chemical warfare nerve agents mainly sarin and tabun were used during the Iran-Iraq war with high mortalities. In addition to atropine and oximes, the followings have recently been used successfully for the treatment of OP poisoning. 1. Sodium Bicarbonate: Infusion of high doses of sodium bicarbonate (5 mEq/kg in 60 min. followed by 5-6 mEq/kg/day to obtain arterial blood...

متن کامل

Rapid oxidation of alcohols and trimethylsilyl and tetrahydropyranyl ethers with CrO3 in the presence of sulfonic acid functionalized ordered nanoporous Na+-montmorillonite

A mild, efficient and fast method for the oxidation of alcohols and trimethylsilyl and tetrahydropyranyl ethers to their corresponding carbonyl compounds using CrO3 in the presence of sulfonic acid functionalized ordered nanoporous Na+-montmorillonite (SANM) and under solvent-free conditions is reported. All reactions were performed at room temperature in high to excellent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 3 5  شماره 

صفحات  -

تاریخ انتشار 2011