Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols.
نویسندگان
چکیده
Malaria parasite (Plasmodium spp.) infection in the mosquito Anopheles stephensi induces significant expression of A. stephensi nitric oxide synthase (AsNOS) in the midgut epithelium as early as 6 h postinfection and intermittently thereafter. This induction results in the synthesis of inflammatory levels of nitric oxide (NO) in the blood-filled midgut that adversely impact parasite development. In mammals, P. falciparum glycosylphosphatidylinositols (PfGPIs) can induce NOS expression in immune and endothelial cells and are sufficient to reproduce the major effects of parasite infection. These effects are mediated in part by mimicry of insulin signaling by PfGPIs. In this study, we demonstrate that PfGPIs can induce AsNOS expression in A. stephensi cells in vitro and in the midgut epithelium in vivo. Signaling by P. falciparum merozoites and PfGPIs is mediated through A. stephensi Akt/protein kinase B and a pathway involving DSOR1, a mitogen-activated protein kinase kinase, and an extracellular signal-regulated kinase. However, despite the involvement of kinases that are also associated with insulin signaling in A. stephensi cells, signaling by P. falciparum and by PfGPIs is distinctively different from signaling by insulin. Therefore, although mimicry of insulin by PfGPIs appears to be restricted to mammalian hosts of P. falciparum, the conservation of PfGPIs as a prominent parasite-derived signal of innate immunity can now be extended to include Anopheles mosquitoes, indicating that parasite signaling of innate immunity is conserved in mosquito and mammalian cells.
منابع مشابه
Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin.
Anopheles stephensi, a major vector for malaria parasite transmission, responds to Plasmodium infection by synthesis of inflammatory levels of nitric oxide (NO), which can limit parasite development in the midgut. We have previously shown that Plasmodium falciparum glycosylphosphatidylinositols (PfGPIs) can induce A. stephensi NO synthase (AsNOS) expression in the midgut epithelium in vivo in a...
متن کاملMAPK ERK Signaling Regulates the TGF-β1-Dependent Mosquito Response to Plasmodium falciparum
Malaria is caused by infection with intraerythrocytic protozoa of the genus Plasmodium that are transmitted by Anopheles mosquitoes. Although a variety of anti-parasite effector genes have been identified in anopheline mosquitoes, little is known about the signaling pathways that regulate these responses during parasite development. Here we demonstrate that the MEK-ERK signaling pathway in Anop...
متن کاملSustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host
The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importa...
متن کاملAnopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development
The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65-99% amino acid identity among these 19 orthologs permitted us to hypothesize that the function...
متن کاملApolipophorin-III Acts as a Positive Regulator of Plasmodium Development in Anopheles stephensi
Apolipophorin III (ApoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune responses of insects. Here we report the molecular and functional characterization of Anopheles stephensi Apolipophorin-III (AsApoLp-III) gene. This gene consists of 679 nucleotides arranged into two exons of 45 and 540 bp that give an ORF encoding 194 amino acid residues. Excl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 5 شماره
صفحات -
تاریخ انتشار 2005