Regional climate variability and ocean heat transport in the southwest Pacific Ocean
نویسندگان
چکیده
The winter of 1992 was the coldest on record in New Zealand since the 1940s. Temperatures in New Zealand were as much as 3øC below average, with heavy rain and unusual snow. The oceanic surface layer in the southwest Pacific was also anomalously cold over the same period. A World Ocean Circulation Experiment (WOCE) hydrographic section (P14C) between Auckland and Fiji during September 1992 found cold sea surface temperatures and deep mixed layers near New Zealand when compared to 8 years of high-resolution expendable bathythermograph (XBT) temperature measurements collected along the same transect. High nutrient and low dissolved oxygen concentrations in the surface layer indicated recent entrainment of thermocline waters. The Auckland to Fiji XBT section is one of three WOCE high-resolution XBT survey lines in the "Tasman Box" region, whose boundaries are Auckland-Fiji, Fiji-Brisbane and Wellington-Sydney transects plus the Australian coast. Geostrophic shear and transport were estimated from 10 realizations of the Tasman Box during the period 1991-1993. The time series of geostrophic transport shows that following a convergence in late 1991, early in 1992 there was a substantial divergence of mass in the upper waters, equivalent to a thinning of the warm water layer. The phase of this anomalous divergence is matched to an observed amplification of the seasonal oceanic heat storage cycle in 1991-1992. The top 200-m average temperature was warmer in the 1992 summer than in 1991 or 1993, but the winter of 1992 was the coldest of the 8-year record along the Auckland-Fiji line. The divergence (thinning) of the warm water layer appears to have preconditioned the region for the exceptionally cold 1992 winter. The alternative, cool conditions from anomalous air-sea heat exchange caused by variability in the wind field, is considered unlikely as large fluctuations in heat loss are not observed in the air-sea flux data during this period. The severe weather conditions and anomalous ocean heat transport are most likely related to the prolonged E1 Nifio-Southern Oscillation episode that began in early 1991.
منابع مشابه
Tropical Pacific–Driven Decadel Energy Transport Variability
The atmospheric energy transport variability associated with decadal sea surface temperature variability in the tropical Pacific is studied using an atmospheric primitive equation model coupled to a slab mixed layer. The decadal variability is prescribed as an anomalous surface heat flux that represents the reduced ocean heat transport in the tropical Pacific when it is anomalously warm. The at...
متن کاملText :Text
The sparsity of data in the southwest Pacific Ocean has limited our understanding of the effect of oceanography in regional ocean climate, and on the role that the ocean plays in ocean-atmosphere interaction. Consequently, comprehensive climate studies of the southwest Pacific region have been constrained due in part to this relatively poor spatial (on regional to large scales) and temporal (on...
متن کاملA Mathematical Model for Indian Ocean Circulation in Spherical Coordinate
In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews processes in which the IO is, or appears to be, actively involved. We begin the mathematical model with a pattern for summer monsoon winds. Three dimensional temperature and velocity fields are calculated analytically for the ocean forced by ...
متن کاملSouthwest Indian Ocean SST Variability: Its Local Effect and Remote Influence on Asian Monsoons*
An atmospheric general circulation model (AGCM) is used to examine the role of Indian Ocean sea surface temperature (SST) anomalies in regional climate variability. In particular, the authors focus on the effect of the basinwide warming that occurs during December through May after the mature phase of El Niño. To elucidate the relative importance of local and remote forcing, model solutions wer...
متن کاملA Theory of Interdecadal Climate Variability of the North Pacific Ocean–Atmosphere System*
A linear coupled model for the atmosphere–upper-ocean system is proposed to highlight the mechanisms of decadal to interdecadal climate variability in the North Pacific. In this model, wind stress anomalies over the North Pacific are related to anomalies in the meridional temperature gradient of the upper ocean. The latter depends upon air–sea thermodynamical feedbacks and meridional heat trans...
متن کامل