FACS binding assay for analysing GDNF interactions.

نویسندگان

  • Luís Quintino
  • Aurélie Baudet
  • Jonas Larsson
  • Cecilia Lundberg
چکیده

Glial cell-line derived neurotrophic factor (GDNF) is a secreted protein with great therapeutic potential. However, in order to analyse the interactions between GDNF and its receptors, researchers have been mostly dependent of radioactive binding assays. We developed a FACS-based binding assay for GDNF as an alternative to current methods. We demonstrated that the FACS-based assay using TGW cells allowed readily detection of GDNF binding and displacement to endogenous receptors. The dissociation constant and half maximal inhibitory concentration obtained were comparable to other studies using standard binding assays. Overall, this FACS-based, simple to perform and adaptable to high throughput setup, provides a safer and reliable alternative to radioactive methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding.

GDNF (glial cell-line-derived neurotrophic factor), and the closely related cytokines artemin and neurturin, bind strongly to heparin. Deletion of a basic amino-acid-rich sequence of 16 residues N-terminal to the first cysteine of the transforming growth factor beta domain of GDNF results in a marked reduction in heparin binding, whereas removal of a neighbouring sequence, and replacement of pa...

متن کامل

Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF.

The formation of appropriate neuronal circuits is an essential part of nervous system development and relies heavily on the outgrowth of axons and dendrites and their guidance to their respective targets. This process is governed by a large array of molecules, including glial cell line-derived neurotrophic factor (GDNF) and the neural cell adhesion molecule (NCAM), the interaction of which indu...

متن کامل

RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association.

The RET receptor tyrosine kinase is essential to vertebrate development and implicated in multiple human diseases. RET binds a cell surface bipartite ligand comprising a GDNF family ligand and a GFRα coreceptor, resulting in RET transmembrane signaling. We present a hybrid structural model, derived from electron microscopy (EM) and low-angle X-ray scattering (SAXS) data, of the RET extracellula...

متن کامل

Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins.

Glial cell line-derived neurotrophic factor (GDNF)-dependent activation of the tyrosine kinase receptor RET is necessary for kidney and enteric neuron development, and mutations in RET are associated with human diseases. Activation of RET by GDNF has been shown to require an accessory component, GDNFR-alpha (RETL1). We report the isolation and characterization of rat and human cDNAs for a novel...

متن کامل

Identification of the key amino acids of glial cell line-derived neurotrophic factor family receptor alpha1 involved in its biological function.

Glial cell line-derived neurotrophic factor (GDNF) plays a critical role in neurodevelopment and survival of midbrain dopaminergic and spinal motor neurons in vitro and in vivo. The biological actions of GDNF are mediated by a two-receptor complex consisting of a glycosylphosphatidylinositol-linked cell surface molecule, the GDNF family receptor alpha1 (GFRalpha1), and receptor protein tyrosine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 218 1  شماره 

صفحات  -

تاریخ انتشار 2013