PTEN/MMAC1 overexpression decreases insulin-like growth factor-I-mediated protection from apoptosis in neuroblastoma cells.
نویسندگان
چکیده
Insulin-like growth factor I (IGF-I) protects cells from apoptosis primarily through the action of phosphatidylinositol-3 kinase and the downstream serine/threonine kinase Akt. The PTEN gene product, a protein which dephosphorylates phosphatidylinositol lipids, prevents activation of Akt and regulates several cellular functions, including cell cycle progression, cell migration, and survival from apoptosis. In this study, PTEN overexpression decreases IGF-I-induced Akt activity, enhances serum withdrawal-induced apoptosis, and decreases IGF-I protection and cell growth in SHEP cells. The PTEN lipid phosphatase mutant G129E fails to inhibit IGF-I-stimulated Akt activity and protection from apoptosis. The C124S mutation, which abolishes both lipid and protein phosphatase activity, fails to inhibit Akt activity and IGF-I protection against hyperosmotic-induced apoptosis but still inhibits growth and IGF-I protection against serum withdrawal-induced apoptosis. These data suggest a role for PTEN in modulating the effect of IGF-I on Akt activity, neuroblastoma cell growth, and protection against apoptotic stimuli.
منابع مشابه
Insulin-like growth factor I is the key growth factor in serum that protects neuroblastoma cells from hyperosmotic-induced apoptosis.
Neuroblastoma is a childhood tumor of the peripheral nervous system that remains largely uncurable by conventional methods. Mannitol induces apoptosis in neuroblastoma cell types and insulin-like growth factor I (IGF-I) protects these cells from hyperosmotic-induced apoptosis by affecting apoptosis-regulatory proteins. In the current study, we investigate factors that enable SH-SY5Y neuroblasto...
متن کاملPTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development.
Mutations in the tumor suppressor gene PTEN (MMAC1/TEP1) are associated with a large number of human cancers and several autosomal-dominant disorders. Mice mutant for PTEN die at early embryonic stages and the mutant embryonic fibroblasts display decreased sensitivity to cell death. Overexpression of PTEN in different mammalian tissue culture cells affects various processes including cell proli...
متن کاملInsulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase-Akt signaling pathways.
The mTOR inhibitor rapamycin induces G1 cell cycle accumulation and p53-independent apoptosis of the human rhabdomyosarcoma cell line Rh1. Insulin-like growth factor I (IGF-I) and insulin, but not epidermal growth factor or platelet-derived growth factor, completely prevented apoptosis of this cell line. Because the Ras-Erk1-Erk2 and phosphatidylinositol 3'-kinase (PI3K)-Akt pathways are implic...
متن کاملInduced Mammary Tumorigenesis − Phosphatase and Tensin Homologue Partially Inhibits Wnt-1 Overexpression of the Tumor Suppressor Gene
The tumor suppressor phosphatase and tensin homologue (PTEN) is involved in cell proliferation, adhesion, and apoptosis. PTEN overexpression in mammary epithelium leads to reduced cell number and impaired differentiation and secretion. In contrast, overexpression of the proto-oncogene Wnt-1 in mammary epithelium leads to mammary hyperplasia and subsequently focal mammary tumors. To explore the ...
متن کاملPTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway.
The tumor suppressor PTEN possesses lipid and protein phosphatase activities. It has been well established that the lipid phosphatase activity is essential for its tumor-suppressive function via the phosphoinositide 3-kinase (PI3K) and Akt pathways. The precise role of the protein phosphatase activity is still unclear. In the current study, we demonstrate that overexpression of wild-type PTEN i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research
دوره 12 7 شماره
صفحات -
تاریخ انتشار 2001