A Ripple-Spreading Genetic Algorithm for the Aircraft Sequencing Problem
نویسندگان
چکیده
When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.
منابع مشابه
Determination of the Aircraft Landing Sequence by Two Meta-Heuristic Algorithms
Due to an anticipated increase in air traffic during the next decade, air traffic control in busy airports is one of the main challenges confronting the controllers in the near future. Since the runway is often a bottleneck in an airport system, there is a great interest in optimizing the use of the runway. The most important factors in aircraft landing modeling are time and cost. For this reas...
متن کاملOnline Torque Ripple Reduction in a Three-Phase 12 by 8 Switched Reluctance Motor Using Genetic Algorithm in PWM Generation
Despite a large number of advantages, Torque Ripple (TR) is the most important drawback of Switched Reluctance Motor (SRM). In the presented study, TR was reduced by optimizing the gate pulse angle of the SRM phase which played a leading role in the generated torque profile. For the Optimization, one of the strategies of Genetic Algorithm (GA) which was named Non-dominated Sorting Genetic Algor...
متن کاملGenetic and Memetic Algorithms for Sequencing a New JIT Mixed-Model Assembly Line
This paper presents a new mathematical programming model for the bi-criteria mixed-model assembly line balancing problem in a just-in-time (JIT) production system. There is a set of criteria to judge sequences of the product mix in terms of the effective utilization of the system. The primary goal of this model is to minimize the setup cost and the stoppage assembly line cost, simultaneously. B...
متن کاملارائه یک الگوریتم ترکیبی کارا جهت حل مدل برنامهریزی خطی چندهدفه زمانبندی مسائل تک ماشین
Since the determination of efficient scheduling plans in sequencing problems with various criterions is considered an important problem, hence in this article a single machine sequencing problem with the minimization type delay and the total weighted lateness objectives are being studied. In this article, the applications of new optimization techniques in sequencing problems and scheduling are ...
متن کاملRipple-Spreading Network Model Optimization by Genetic Algorithm*
Small world and scale free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM) is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolutionary computation
دوره 19 1 شماره
صفحات -
تاریخ انتشار 2011