RSVM: Reduced Support Vector Machines
نویسندگان
چکیده
Abstract An algorithm is proposed which generates a nonlinear kernel-based separating surface that requires as little as 1% of a large dataset for its explicit evaluation. To generate this nonlinear surface, the entire dataset is used as a constraint in an optimization problem with very few variables corresponding to the 1% of the data kept. The remainder of the data can be thrown away after solving the optimization problem. This is achieved by making use of a rectangular m×m̄ kernel K(A, Ā) that greatly reduces the size of the quadratic program to be solved and simplifies the characterization of the nonlinear separating surface. Here, the m rows of A represent the original m data points while the m̄ rows of Ā represent a greatly reduced m̄ data points. Computational results indicate that test set correctness for the reduced support vector machine (RSVM), with a nonlinear separating surface that depends on a small randomly selected portion of the dataset, is better than that of a conventional support vector machine (SVM) with a nonlinear surface that explicitly depends on the entire dataset, and much better than a conventional SVM using a small random sample of the data. Computational times, as well as memory usage, are much smaller for RSVM than that of a conventional SVM using the entire dataset.
منابع مشابه
Variant Methods of Reduced Set Selection for Reduced Support Vector Machines
In dealing with large datasets the reduced support vector machine (RSVM) was proposed for the practical objective to overcome the computational difficulties as well as to reduce the model complexity. In this paper, we propose two new approaches to generate representative reduced set for RSVM. First, we introduce Clustering Reduced Support Vector Machine (CRSVM) that builds the model of RSVM via...
متن کاملIncremental Reduced Support Vector Machines
The reduced support vector machine (RSVM) has been proposed to avoid the computational difficulties in generating a nonlinear support vector machine classifier for a massive dataset. RSVM selects a small random subset from the entire dataset with a user pre-specified size m̄ to generate a reduced kernel (rectangular) matrix. This reduced kernel will replace the fully dense square kernel matrix u...
متن کاملClustering Model Selection for Reduced Support Vector Machines
The reduced support vector machine was proposed for the practical objective that overcomes the computational difficulties as well as reduces the model complexity by generating a nonlinear separating surface for a massive dataset. It has been successfully applied to other kernel-based learning algorithms. Also, there are experimental studies on RSVM that showed the efficiency of RSVM. In this pa...
متن کاملUtility-based Weighted Multicategory Robust Support Vector Machines.
The Support Vector Machines (SVM) has been an important classification technique in both machine learning and statistics communities. The robust SVM is an improved version of the SVM so that the resulting classifier can be less sensitive to outliers. In many practical problems, it may be advantageous to use different weights for different types of misclassification. However, the existing RSVM t...
متن کاملA study on reduced support vector machines
Recently the reduced support vector machine (RSVM) was proposed as an alternate of the standard SVM. Motivated by resolving the difficulty on handling large data sets using SVM with nonlinear kernels, it preselects a subset of data as support vectors and solves a smaller optimization problem. However, several issues of its practical use have not been fully discussed yet. For example, we do not ...
متن کاملRecurrent Support Vector Machines For Slot Tagging In Spoken Language Understanding
We propose recurrent support vector machine (RSVM) for slot tagging. This model is a combination of the recurrent neural network (RNN) and the structured support vector machine. RNN extracts features from the input sequence. The structured support vector machine uses a sequence-level discriminative objective function. The proposed model therefore combines the sequence representation capability ...
متن کامل