A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery

نویسندگان

  • Andrea Laliberte
  • Dawn Browning
  • Albert Rango
چکیده

The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature selection methods have been used in conjunction with OBIA, a robust comparison of the utility and efficiency of approaches would facilitate broader and more effective implementation. In this study, we evaluated three feature selection methods, (1) Jeffreys–Matusita distance (JM), (2) classification tree analysis (CTA), and (3) feature space optimization (FSO) for object-based vegetation classifications with sub-decimeter digital aerial imagery in arid rangelands of the southwestern U.S. We assessed strengths, weaknesses, and best uses for each method using the criteria of ease of use, ability to rank and/or reduce input features, and classification accuracies. For the five sites tested, JM resulted in the highest overall classification accuracies for three sites, while CTA yielded highest accuracies for two sites. FSO resulted in the lowest accuracies. CTA offered ease of use and ability to rank and reduce features, while JM had the advantage of assessing class separation distances. FSO allowed for determining features relatively quickly, because it operates within the OBIA software used in this analysis (eCognition). However, the feature ranking in FSO is not transparent and accuracies were relatively low. While all methods offered an objective approach for determining suitable features for classifications of sub-decimeter resolution aerial imagery, we concluded that CTA was best suited for this particular application. We explore the limitations, assumptions, and appropriate uses for this and other datasets. © 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection Methods for Object-based Classification of Sub-decimeter Resolution Digital Aerial Imagery

The availability of numerous spectral, spatial, and contextual features renders the selection of optimal features a time consuming and subjective process in object-based image analysis (OBIA). While several feature selection methods have been used in conjunction with OBIA, a robust comparison of the utility and efficiency of approaches could facilitate broader application. In this study, we tes...

متن کامل

Automatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems

With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Comparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods

Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...

متن کامل

Developing a New Method in Object Based Classification to Updating Large Scale Maps with Emphasis on Building Feature

According to the cities expansion, updating urban maps for urban planning is important and its effectiveness is depend on the information extraction / change detection accuracy. Information extraction methods are divided into two groups, including Pixel-Based (PB) and Object-Based (OB). OB analysis has overcome the limitations of PB analysis (producing salt-pepper results and features with hole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2012