A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator
نویسندگان
چکیده
Maximum entropy models are often used to describe supply and demand behavior in urban transportation and land use systems. However, they have been criticized for not representing behavioral rules of system agents and because their parameters seems to adjust only to modeler-imposed constraints. In response, it is demonstrated that the solution to the entropy maximization problem with linear constraints is a multinomial logit model whose parameters solve the likelihood maximization problem of this probabilistic model. But this result neither provides a microeconomic interpretation of the entropy maximization problem nor explains the equivalence of these two optimization problems. This work demonstrates that an analysis of the dual of the entropy maximization problem yields two useful alternative explanations of its solution. The first shows that the maximum entropy estimators of the multinomial logit model parameters reproduce rational user behavior, while the second shows that the likelihood maximization problem for multinomial logit models is the dual of the entropy maximization problem.
منابع مشابه
Estimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کاملEstimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach
Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...
متن کاملA Smoothed Maximum Score Estimator for Multinomial Discrete Choice Models
We propose a semiparametric estimator for multinomial discrete choice models. The term “semiparametric” refers to the fact that we do not specify a particular functional form for the error term in the random utility function and we allow for heteroskedasticity and serial correlation. Despite being semiparametric, the rate of convergence of the smoothed maximum score estimator is not affected by...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملEstimating a Bounded Normal Mean Under the LINEX Loss Function
Let X be a random variable from a normal distribution with unknown mean θ and known variance σ2. In many practical situations, θ is known in advance to lie in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X under the LINEX loss function is inadmissible, finding some competitors for X becomes worthwhile. The only study in the literature considered the problem of min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 12 شماره
صفحات -
تاریخ انتشار 2010