Music Genre Classification Systems [1ex] - A Computational Approach

نویسنده

  • Peter Ahrendt
چکیده

In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tappeddelay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion1 such as dynamic PCA (DPCA). The most frequently suggested features in the literature were employed including melfrequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied. A Gaussian classifier (GC) with full covariance structure and a linear neural network (NN) classifier are used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

Music Genre Classification Revisited: An In-Depth Examination Guided by Music Experts

Despite their many identified shortcomings, music genres are still often used as ground truth and as a proxy for music similarity. In this work we therefore take another in-depth look at genre classification, this time with the help of music experts. In comparison to existing work, we aim at including the viewpoint of different stakeholders to investigate whether musicians and end-user music ta...

متن کامل

Classification of Music Genre

As the demand for multimedia grows, the development of information retrieval systems including information about music is of increasing concern. Radio stations and music TV channels hold archives of millions of music tapes. Gigabytes of music files are also spread over the web. To automate searching and organizing the music files based on their genre is a challenging task. In this report, we pr...

متن کامل

Music Genre Categorization in Humans and Machines

Music Genre Classification is one of the most active tasks in Music Information Retrieval (MIR). Many successful approaches can be found in literature. Most of them are based on Machine Learning algorithms applied to different audio features automatically computed for a specific database. But there is no computational model that explains how musical features are combined in order to yield genre...

متن کامل

Improving Genre Classification by Combination of Audio and Symbolic Descriptors Using a Transcription Systems

Recent research in music genre classification hints at a glass ceiling being reached using timbral audio features. To overcome this, the combination of multiple different feature sets bearing diverse characteristics is needed. We propose a new approach to extend the scope of the features: We transcribe audio data into a symbolic form using a transcription system, extract symbolic descriptors fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006