Spectral Properties of the Ruelle Operator on the Walters Class over Compact Spaces

نویسندگان

  • Leandro Cioletti
  • Eduardo A. Silva
چکیده

Recently the Ruelle-Perron-Fröbenius theorem was proved for Hölder potentials defined on the symbolic space Ω = MN, where (the alphabet) M is any compact metric space. In this paper, we extend this theorem to the Walters space W (Ω), in similar general alphabets. We also describe in detail an abstract procedure to obtain the Fréchetanalyticity of the Ruelle operator under quite general conditions and we apply this result to prove the analytic dependence of this operator on both Walters and Hölder spaces. The analyticity of the pressure functional on Hölder spaces is established. An exponential decay of the correlations is shown when the Ruelle operator has the spectral gap property. A new (and natural) family of Walters potentials (on a finite alphabet derived from the Ising model) not having an exponential decay of the correlations is presented. Because of the lack of exponential decay, for such potentials we have the absence of the spectral gap for the Ruelle operator. The key idea to prove the lack of exponential decay of the correlations are the Griffiths-Kelly-Sherman inequalities. Key-words: Thermodynamic formalism, Ruelle operator, one-dimensional lattice, Analyticity of Pressure, Spectral Gap. MSC2010: 37A60, 37A50, 82B05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Linear v{C}ech closure spaces

In this paper, we introduce the concept of linear v{C}ech closure spaces and establish the properties of open sets in linear v{C}ech closure spaces (Lv{C}CS). Here, we observe that the concept of linearity is preserved by semi-open sets, g-semi open sets, $gamma$-open sets, sgc-dense sets and compact sets in Lv{C}CS. We also discuss the concept of relative v{C}ech closure operator, meet and pro...

متن کامل

Ruelle-perron-frobenius Spectrum for Anosov Maps

We extend a number of results from one dimensional dynamics based on spectral properties of the Ruelle-Perron-Frobenius transfer operator to Anosov diffeomorphisms on compact manifolds. This allows to develop a direct operator approach to study ergodic properties of these maps. In particular, we show that it is possible to define Banach spaces on which the transfer operator is quasicompact. (In...

متن کامل

Asymptotic distribution of eigenvalues of the elliptic operator system

Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016