Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy.

نویسندگان

  • M DeNiro
  • A Al-Halafi
  • F H Al-Mohanna
  • O Alsmadi
  • F A Al-Mohanna
چکیده

Vascular endothelial growth factor (VEGF) and inducible nitric-oxide synthase (iNOS) have been implicated in ischemia-induced retinal neovascularization. Retinal ischemia has been shown to induce VEGF and iNOS expression. It has been postulated that one of the crucial consequences of iNOS expression in the ischemic retina is the inhibition of angiogenesis. Furthermore, iNOS was shown to be overexpressed in Müller cells from patients with diabetic retinopathy. YC-1, a small molecule inhibitor of hypoxia-inducible factor (HIF)-1 alpha, has been shown to inhibit iNOS expression in various tissue models. Our aim was to assess the pleiotropic effects of YC-1 in an oxygen-induced retinopathy (OIR) mouse model and evaluate its therapeutic potential in HIF-1- and iNOS-mediated retinal pathologies. Dual-injections of YC-1 into the neovascular retinas decreased the total retinopathy score, inhibited vaso-obliteration and pathologic tuft formation, and concomitantly promoted physiological retinal revascularization, compared with dimethyl sulfoxide (DMSO)-treated group. Furthermore, YC-1-treated retinas exhibited a marked increase in immunoreactivities for CD31 and von Willebrand factor and displayed significant inhibition in HIF-1alpha protein expression. Furthermore, YC-1 down-regulated VEGF, erythropoietin, endothelin-1, matrix metalloproteinase-9, and iNOS message and protein levels. When hypoxic Müller and neuoroglial cells were treated with YC-1, iNOS mRNA and protein levels were reduced in a dose-dependent fashion. We demonstrate that YC-1 inhibits pathological retinal neovascularization by exhibiting antineovascular activities, which impaired ischemia-induced expression of HIF-1 and its downstream angiogenic molecules. Furthermore, YC-1 enhanced physiological revascularization of the retinal vascular plexuses via the inhibition of iNOS mRNA and protein expressions. The pleiotropic effects of YC-1 allude to its possible use as a promising therapeutic iNOS inhibitor candidate for the treatment of retinal neovascularization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Targeting of Retinal Vasculature in the Mouse Model of Oxygen Induced Retinopathy

Hypoxia-inducible factor-1 (HIF-1) plays crucial roles in retinal neovascularization (NV) by upregulating its target genes, which are involved in anaerobic energy metabolism, angiogenesis, cell survival, cell invasion, and drug resistance. Therefore, it is apparent that the inhibition of HIF-1 activity may be a strategy for treating retinal angiopathies. Many efforts to develop new HIF-1-target...

متن کامل

Hyperoxia therapy of pre-proliferative ischemic retinopathy in a mouse model.

PURPOSE To investigate the therapeutic use and mechanisms of action of normobaric hyperoxia to promote revascularization and to prevent neovascularization in a mouse model of oxygen-induced ischemic retinopathy. METHODS Hyperoxia treatment (HT, 40%-75% oxygen) was initiated on postnatal day (P) 14 during the pre-proliferative phase of ischemic retinopathy. Immunohistochemistry, ELISA, and qua...

متن کامل

Inhibition of Reactive Gliosis Prevents Neovascular Growth in the Mouse Model of Oxygen-Induced Retinopathy

Retinal neovascularization (NV) is a major cause of blindness in ischemic retinopathies. Previous investigations have indicated that ischemia upregulates GFAP and PDGF-B expression. GFAP overexpression is a hallmark of reactive gliosis (RG), which is the major pathophysiological feature of retinal damage. In addition, PDGF-B has been implicated in proliferative retinopathies. It was the aim of ...

متن کامل

Intravitreal injection of TIMP3 or the EGFR inhibitor erlotinib offers protection from oxygen-induced retinopathy in mice.

PURPOSE Pathological neovascularization is a crucial component of proliferative retinopathies. Previous studies showed that inactivation of A disintegrin and metalloproteinase 17 (ADAM17), a membrane-anchored metalloproteinase that regulates epidermal growth factor receptor (EGFR) signaling, reduces pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). He...

متن کامل

CEACAM1 confers resistance toward oxygen-induced vessel damage in a mouse model of retinopathy of prematurity.

PURPOSE To determine a functional role for the carcinoembryonic antigen-related cell-adhesion molecule 1 (CEACAM1) in retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). METHODS In a 21/75/21% OIR mouse model, retinal neovascularization was compared in wild-type and CEACAM1-deficient mice. Animals were housed under normoxic conditions until postnatal day 7, follow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 2010