MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Time-Varying Lyapunov Equation Solving

نویسندگان

  • Yunong Zhang
  • Shuai Yue
  • Ke Chen
  • Chenfu Yi
چکیده

This paper presents a new kind of recurrent neural network proposed by Zhang et al. for solving online Lyapunov equation with time-varying coefficient matrices. Global exponential convergence could be achieved by such a recurrent neural network when solving the timevarying problems in comparison with gradient neural networks (GNN). MATLAB simulation of both neural networks for the real-time solution of time-varying Lyapunov equation is then investigated through several important techniques. Computer-simulation results substantiate the theoretical analysis and demonstrate the efficacy of such a Zhang neural network (ZNN) on time-varying Lyapunov equation solving, especially when using power-sigmoid activation functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Matrix Equation AXB-C=0

Different from gradient neural networks (GNN), a special kind of recurrent neural networks has been proposed recently by Zhang et al for solving online linear matrix equations with time-varying coefficients. Such recurrent neural networks, designed based on a matrixvalued error-function, could achieve global exponential convergence when solving online time-varying problems in comparison with gr...

متن کامل

MATLAB Simulation and Comparison of Zhang Neural Network and Gradient Neural Network for Online Solution of Linear Time-Varying Equations

Different from gradient-based neural networks (in short, gradient neural networks), a special kind of recurrent neural networks has recently been proposed by Zhang et al for time-varying matrix inversion and equations solving. As compared to gradient neural networks (GNN), Zhang neural networks (ZNN) are designed based on matrix-valued or vector-valued error functions, instead of scalar-valued ...

متن کامل

A Recurrent Neural Network Model for solving CCR Model in Data Envelopment Analysis

In this paper, we present a recurrent neural network model for solving CCR Model in Data Envelopment Analysis (DEA). The proposed neural network model is derived from an unconstrained minimization problem. In the theoretical aspect, it is shown that the proposed neural network is stable in the sense of Lyapunov and globally convergent to the optimal solution of CCR model. The proposed model has...

متن کامل

Designing stable neural identifier based on Lyapunov method

The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...

متن کامل

A Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis

In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-laye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008