Combinatorial integers (m, nj) and Schubert calculus in the integral cohomology ring of infinite smooth flag manifolds

نویسندگان

  • Cenap Özel
  • Erol Yilmaz
چکیده

Kumar described the Schubert classes which are the dual to the closures of the Bruhat cells in the flag varieties of the Kac-Moody groups associated to the infinite dimensional KacMoody algebras [17]. These classes are indexed by affine Weyl groups and can be chosen as elements of integral cohomologies of the homogeneous space L̂polGC/B̂ for any compact simply connected semisimple Lie groupG. Later, S. Kumar, and B. Kostant described explicit cup product formulas of these classes in the cohomology algebras by using the relation between the invariant-theoretic relative Lie algebra cohomology theory (using the representation module of the nilpotent part) with the purely nil-Hecke rings [16]. These explicit product formulas involve some BGG-type operators Ai and reflections. In the published work [20] of the first author, using some homotopy equivalences, cohomology ring structures of LG/T have been determined where LG is the smooth loop space on G. He has calculated the products and explicit ring structure of LSU2/T using these ideas. He found that it has a quotient of the divided power algebra. In this work, we list explicit presentation of affine Weyl group of the loop group LSU3. We calculate generators for ideals and the rank of the modules of graded cohomology algebra of LSU3/T and ΩSU3 in the coefficient ring Z[1/2]. Some comments about the structure of this work are in order. It is written for a reader with a first course in algebraic topology and some understanding of the structure of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The integral cohomology of complete flag manifolds

Let G be an exceptional Lie group with a maximal torus T ⊂ G. We express the integral cohomology ring H(G/T ) by a minimal set of Schubert classes on G/T . This completes the program of determining the integral cohomology of all complete flag manifolds G/T in the context of Schubert calculus. The results are used in [DZ3] to construct the integral cohomology of a simple Lie group G in terms of ...

متن کامل

The integral cohomology of G/T

Let G be an exceptional Lie group with T ⊂ G a maximal torus. We express the integral cohomology ring H(G/T ) by a minimal set of Schubert classes on G/T . This completes the program of determining the integral cohomology of all complete flag manifolds G/T in the context of Schubert calculus. The results are used in [DZ3] to construct the integral cohomology of a simple Lie group G in terms of ...

متن کامل

The integral cohomology of a complete flag manifold G/T

Let G be an exceptional Lie group with a maximal torus T ⊂ G. We present the integral cohomology ring H∗(G/T ) by a minimal set of Schubert classes on G/T . This completes the program of determining the integral cohomology of all complete flag manifolds G/T in the context of Schubert calculus. The results have been applied in [DZ3] to construct the integral cohomology of a simple Lie group G in...

متن کامل

Classification of Ding’s Schubert Varieties: Finer Rook Equivalence

K. Ding studied a class of Schubert varieties Xλ in type A partial flag manifolds, indexed by integer partitions λ and in bijection with dominant permutations. He observed that the Schubert cell structure of Xλ is indexed by maximal rook placements on the Ferrers board Bλ, and that the integral cohomology groups H∗(Xλ; Z), H ∗(Xμ; Z) are additively isomorphic exactly when the Ferrers boards Bλ,...

متن کامل

Pieri’s Rule for Flag Manifolds and Schubert Polynomials

We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary symmetric polynomial or a complete homogeneous symmetric polynomial. Thus, we generalize the classical Pieri’s rule for symmetric polynomials/Grassmann varietie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006