Radon Transforms and the Finite General Linear Groups
نویسندگان
چکیده
Using a class sum and a collection of related Radon transforms, we present a proof G. James’s Kernel Intersection Theorem for the complex unipotent representations of the finite general linear groups. The approach is analogous to that used by F. Scarabotti for a proof of James’s Kernel Intersection Theorem for the symmetric group. In the process, we also show that a single class sum may be used to distinguish between distinct irreducible unipotent representations.
منابع مشابه
Classical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملar X iv : m at h / 04 04 01 9 v 2 [ m at h . C O ] 2 6 A ug 2 00 5 LAPLACIAN OPERATORS AND RADON TRANSFORMS ON GRASSMANN GRAPHS
Let Ω be a vector space over a finite field with q elements. Let G denote the general linear group of endomorphisms of Ω and let us consider the left regular representation ρ : G → B(L 2 (X)) associated to the natural action of G on the set X of linear subspaces of Ω. In this paper we study a natural basis B of the algebra End G (L 2 (X)) of intertwining maps on L 2 (X). By using a Laplacian op...
متن کاملar X iv : m at h / 04 04 01 9 v 1 [ m at h . C O ] 1 A pr 2 00 4 LAPLACIAN OPERATORS AND RADON TRANSFORMS ON GRASSMANN GRAPHS
Let Ω be a vector space over a finite field with q elements. Let G denote the general linear group of endomorphisms of Ω and let us consider the left regular representation ρ : G → B(L 2 (X)) associated to the natural action of G on the set X of linear subspaces of Ω. In this paper we study a natural basis B of the algebra End G (L 2 (X)) of intertwining maps on L 2 (X). By using a Laplacian op...
متن کاملRadon Transforms on Affine Grassmannians
We develop an analytic approach to the Radon transform f̂(ζ) = ∫ τ⊂ζ f(τ), where f(τ) is a function on the affine Grassmann manifold G(n, k) of k-dimensional planes in Rn, and ζ is a k′-dimensional plane in the similar manifold G(n, k′), k′ > k. For f ∈ Lp(G(n, k)), we prove that this transform is finite almost everywhere on G(n, k′) if and only if 1 ≤ p < (n− k)/(k′− k), and obtain explicit inv...
متن کاملA Method for Proving L-boundedness of Singular Radon Transforms in Codimension 1
Singular Radon transforms are a type of operator combining characteristics of both singular integrals and Radon transforms. They are important in a number of settings in mathematics. In a theorem of M. Christ, A. Nagel, E. Stein, and S. Wainger [3], L boundedness of singular Radon transforms for 1 < p < ∞ is proven under a general finite-type condition using the method of lifting to nilpotent L...
متن کامل