Surface plasmon resonance of Au-Cu bimetallic nanoparticles predicted by a quasi-chemical model
نویسندگان
چکیده
Au-Cu alloys are functional materials with nonlinear optical applications. However, the optical properties of such alloys are difficult to predict due to the random mixing of materials. In this paper, we present a quasi-chemical model to simulate the optical properties of Au-Cu alloy systems based on the mixing of Gibbs free energy. This model is also able to predict the position of the surface plasmon resonance peaks for Au-Cu alloy nanoparticles. The model can be applied to predict the optical properties of alloy systems in the fields of plasmonics and nanophotonics.
منابع مشابه
The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles
In this paper, the temperature dependence on optical absorption cross section of the core shell bimetallic nanoparticles (NPs) is investigated in quasi static approximation. Temperature dependence of the plasmon resonance is important issue because of recent applications of NPs of noble metal for heat treating of cancer and the computer chips. The effect of temperature on surface plasmon resona...
متن کاملA Study of the Influence of Percentage of Copper on the Structural and Optical Properties of Au-Cu Nanoparticle
Here we present our experimental results in synthesizing Au-Cu nano-particles with tunable localized surface plasmon resonance frequency through wet-chemical at temperature room. The reaction is performed in the presence of ascorbic acid as a reducing agent and polyvinyl pyrrolidone as capping agent via four different procedures: (1) mixture of 90% HAuCl4 and 10% CuSO4.5H2O precursors, (2) mixt...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملEngineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors.
Large area fabrication of metal alloy nanoparticles with tunable surface plasmon resonances on low-cost substrates is reported. A UV excimer laser was used to anneal 5 nm thick Ag Au bilayer films deposited with different composition ratios to create alloy nanoparticles. These engineered surfaces are used to investigate how the wavelength of the surface plasmon resonance affects the optical det...
متن کاملGreen synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies
In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, ecofriendly synthesis of Au–Ag bimetallic core–shell nanoparticles using gripe water as reducing as well as stabilizing ...
متن کامل