Role of the executioner caspases during lens development.

نویسندگان

  • Anna J Zandy
  • Saquib Lakhani
  • Timothy Zheng
  • Richard A Flavell
  • Steven Bassnett
چکیده

The notion that the cell death machinery is utilized during lens organelle degradation is supported by the observation that well characterized apoptotic substrates are cleaved during this process. Here, we test directly the role of executioner caspases (caspase-3, -6, and -7) in fiber cell differentiation. The distribution of mRNA, protein, and enzymatic activity for each caspase was determined in the mouse lens. Transcripts for all three executioner caspases were identified in lens fiber cells by real time RT-PCR, although only caspase-6 and -7 proteins were detected subsequently by Western blot analysis. Endogenous proteolytic activity was noted for caspase-3 but not caspase-6 or -7. We tested the role of executioner caspases in organelle degradation by examining lenses from mice deficient in each caspase. Knock-out lenses appeared grossly normal with the exception of caspase-3(-/-) lenses, which exhibited marked cataracts at the anterior lens pole. The distribution of lens organelles was mapped by confocal microscopy. There was no significant difference in the size of the lens organelle-free zone (OFZ)1 between wild-type and knock-out lenses. In response to treatment with staurosporine, caspase-3 and -6 (but not caspase-7) enzymatic activities were induced. We generated double knock-out animals to examine the phenotype of lenses deficient in both caspase-3 and -6. Histological examination of such lenses indicated the presence of a properly formed OFZ. Thus, no single executioner caspase (nor a combination of caspase-3 and -6) is required for organelle loss, although caspase-3 activity may be required for other aspects of lens transparency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the Executioner Caspases during Lens

The notion that the cell death machinery is utilized during lens organelle degradation is supported by the observation that well characterized apoptotic substrates are cleaved during this process. Here, we test directly the role of executioner caspases (caspase-3, -6, and -7) in fiber cell differentiation. The distribution of mRNA, protein, and enzymatic activity for each caspase was determined...

متن کامل

Executioner Caspase-3 and 7 Deficiency Reduces Myocyte Number in the Developing Mouse Heart

Executioner caspase-3 and -7 are proteases promoting cell death but non-apoptotic roles are being discovered. The heart expresses caspases only during development, suggesting they contribute to the organ maturation process. Therefore, we aimed at identifying novel functions of caspases in heart development. We induced simultaneous deletion of executioner caspase-3 and -7 in the mouse myocardium...

متن کامل

Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches

Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Althoug...

متن کامل

The Enigmatic Roles of Caspases in Tumor Development

One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in di...

متن کامل

New Views on the Misconstrued: Executioner Caspases and Their Diverse Non-apoptotic Roles

Initially characterized for their roles in apoptosis, executioner caspases have emerged as important regulators of an array of cellular activities. This is especially true in the nervous system, where sublethal caspase activity has been implicated in axonal pathfinding and branching, axonal degeneration, dendrite pruning, regeneration, long-term depression, and metaplasticity. Here we examine t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 34  شماره 

صفحات  -

تاریخ انتشار 2005