Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii.

نویسندگان

  • Dana L Royer
  • Jennifer C McElwain
  • Jonathan M Adams
  • Peter Wilf
چکیده

* Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and the value of intraspecific patterns for paleoclimate reconstructions. * The leaf physiognomy of two species whose native North American ranges span large climatic gradients (Acer rubrum and Quercus kelloggii) was quantified and correlated to mean annual temperature (MAT). Quercus kelloggii was sampled across a wide elevation range, but A. rubrum was sampled in strictly lowland areas. * Within A. rubrum, leaf shape correlates with MAT in a manner that is largely consistent with previous site-level studies; leaves from cold climates are toothier and more highly dissected. By contrast, Q. kelloggii is largely insensitive to MAT; instead, windy conditions with ample plant-available water may explain the preponderance of small teeth at high elevation sites, independent of MAT. * This study highlights the strong correspondence between leaf form and climate within some species, and demonstrates that intraspecific patterns may contribute useful information towards reconstructing paleoclimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum

Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured fro...

متن کامل

Leaf Shape Responds to Temperature but Not CO2 in Acer rubrum

The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known...

متن کامل

Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species

Predicting the effects of climate change on tree species and communities is critical for understanding the future state of our forested ecosystems. We used a fully factorial precipitation (three levels; ambient, -50 % ambient, +50 % ambient) by warming (four levels; up to +4 °C) experiment in an old-field ecosystem in the northeastern USA to study the climatic sensitivity of seedlings of six na...

متن کامل

Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America

1. It is generally believed that warmer climate forests suffer more herbivory, as a proportion of leaf area, than cooler climate forests. However, standardized studies using the same methodology have rarely been performed. 2. We carried out a study on scattered forest-edge populations of four widespread tree species (Quercus alba,Acer rubrum, Fagus grandifolia and Liquidambar styraciflua) spann...

متن کامل

Effects of elevated CO2 and light availability on the photosyn

leaf N concentration and content, and relative leaf absorbance (αr) were measured in 1-year-old seedlings of shade-intolerant Betula papyrifera Marsh., moderately shade-tolerant Quercus rubra L. and shade-tolerant Acer rubrum L. Seedlings were grown in full sun or 26% of full sun (shade) and in ambient (350 ppm) or elevated (714 ppm) CO2 for 80 days. In the shade treatments, 80% of the daily PP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 179 3  شماره 

صفحات  -

تاریخ انتشار 2008