Fault inductance based protection for DC distribution systems

نویسندگان

  • X Feng
  • L. Qi
چکیده

The fault protection is a critical element to ensure the reliable and secure operation of DC distribution systems. Most DC distribution systems are tightly coupled systems with low line impedances which may result in fast current increase during a fault. Thus, it is challenging to develop a fast and reliable DC fault protection method. This paper proposes and develops a novel fault inductance based DC protection method without communication between protection units at different locations. The performance of the developed protection algorithm was validated in a Real-Time Hardware-In-theLoop (RTHIL) test platform. The testing results indicate that the developed inductance based fault location algorithm detects and locates faults with fast speed and high accuracy. Preliminary sensitivity analysis on measurement errors are also conducted to study impacts on accuracy of estimated fault inductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of Inrush from Fault Currents in Power Transformers Based on Equivalent Instantaneous Inductance Technique Coupled with Finite Element Method

The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equiv...

متن کامل

An Intelligent Protection Method for Multi-terminal DC Microgrids Using On-line Phaselet, Mathematical Morphology, and Fuzzy Inference Systems

In this paper, a new method for fault detection, location, and classification in multi-terminal DC microgrid (MTDC) is proposed. MTDC grids have expanded due to some issues such as the expansion of DC resources, loads, and aims to increase power quality. Diagnosing the types and location of faults is important to continue the service and prevent further outages. In this method, a circuit kit is...

متن کامل

A local measurement-based protection scheme for DER integrated DC microgrid using Bagging Tree

In recent years, DC microgrid has attracted considerable attention of the research community because of the wide usage of DC power-based appliances. However, the acceptance of DC microgrid by power utilities is still limited due to the issues associated with the development of a reliable protection scheme. The high magnitude of DC fault current, its rapid rate of rising and absence of zero cros...

متن کامل

Unbalanced and over current Fault protection in low voltage DC bus micro grid systems

Unlike traditional AC distribution systems, protection has been challenging for DC systems. Multi-terminal DC power systems do not have the years of practical experience and standards that AC power systems have. Also, the current power electronic devices cannot survive or sustain high magnitude faults. Converters will shut down to protect themselves under faulted conditions. This makes locating...

متن کامل

System Protection for Power Electronic Building Block Based DC Distribution Systems

MAHAJAN, NIKHIL RAVINDRA. System Protection for Power Electronic Building Block Based DC Distribution Systems. (Under the direction of Mesut E Baran) The purpose of this research has been to develop an agent based protection and reconfiguration scheme for power electronic building block based (PEBB) DC distribution systems. One of the foremost applications would be in the new zonal DC distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015