Rap1p requires Gcr1p and Gcr2p homodimers to activate ribosomal protein and glycolytic genes, respectively.
نویسندگان
چکیده
Efficient transcription of ribosomal protein (RP) and glycolytic genes requires the Rap1p/Gcr1p regulatory complex. A third factor, Gcr2p, is required for only the glycolytic (specialized) mode of transcriptional activation. It is recruited to the complex by Gcr1p and likely mediates a change in the phosphorylation state and/or conformation of the latter. We show here that leucine zipper motifs in Gcr1p and Gcr2p (1LZ and 2LZ) are each specific to one of the two activation mechanisms-mutations in 1LZ and 2LZ impair transcription of RP and glycolytic genes, respectively. Although neither class of mutations causes more than a mild growth defect, simultaneous impairment of 1LZ and 2LZ results in a severe synthetic defect and a reduction in the expression of both sets of genes. Intracistronic complementation by point mutations in the charged e and g positions confirmed that Gcr1p/Gcr1p and Gcr2p/Gcr2p homodimers are the forms required for the different roles of the activator complex. Direct heterodimerization between 1LZ and 2LZ apparently does not occur. Dichotomous Rap1p activation and its striking requirement for distinct homodimeric subunits give cells the capacity to switch between coordinated and uncoupled RP and glycolytic gene regulation.
منابع مشابه
The role of Gcr1p in the transcriptional activation of glycolytic genes in yeast Saccharomyces cerevisiae.
To study the interdependence of Gcr1p and Rap1p, we prepared a series of synthetic regulatory sequences that contained various numbers and combinations of CT-boxes (Gcr1p-binding sites) and RPG-boxes (Rap1p-binding sites). The ability of the synthetic oligonucleotides to function as regulatory sequences was tested using an ENO1-lacZ reporter gene. As observed previously, synthetic oligonucleoti...
متن کاملThe global transcriptional activator of Saccharomyces cerevisiae, Gcr1p, mediates the response to glucose by stimulating protein synthesis and CLN-dependent cell cycle progression.
Growth of Saccharomyces cerevisiae requires coordination of cell cycle events (e.g., new cell wall deposition) with constitutive functions like energy generation and duplication of protein mass. The latter processes are stimulated by the phosphoprotein Gcr1p, a transcriptional activator that operates through two different Rap1p-mediated mechanisms to boost expression of glycolytic and ribosomal...
متن کاملThe GCR2 gene is required for the transcriptional activation of retrotransposon Ty2-917 in Saccharomyces cerevisiae.
Ty2 retrotransposons are the mobile genetic elements of the yeast Saccharomyces cerevisiae. Transcriptional regulation of Ty2-917 requires a complex set of cis acting elements which are located both upstream and downstream of the transcription initiation site. Previously, the glycolysis regulatory protein Gcr1p has been identified as the major transcriptional regulator of Ty2-917. Gcr1p is a DN...
متن کاملRepression of rRNA synthesis due to a secretory defect requires the C-terminal silencing domain of Rap1p in Saccharomyces cerevisiae.
A secretory defect causes specific transcriptional repression of both ribosomal protein and ribosomal RNA genes, suggesting the coupling of plasma membrane and ribosome syntheses. We previously reported that the rap1-17 allele, which produced C-terminally truncated Rap1p, derepressed transcription of ribosomal protein genes when the secretory pathway was blocked. In this paper, we demonstrate t...
متن کاملMolecular and genetic analysis of the toxic effect of RAP1 overexpression in yeast.
Rap1p is a context-dependent regulatory protein in yeast that functions as a transcriptional activator of many essential genes, including those encoding ribosomal proteins and glycolytic enzymes. Rap1p also participates in transcriptional silencing at HM mating-type loci and telomeres. Overexpression of RAP1 strongly inhibits cell growth, perhaps by interfering with essential transcriptional ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 158 1 شماره
صفحات -
تاریخ انتشار 2001