Beetle Antennae Search without Parameter Tuning (BAS-WPT) for Multi-objective Optimization
نویسندگان
چکیده
Beetle antennae search (BAS) is an efficient metaheuristic algorithm inspired by foraging behaviors of beetles. This algorithm includes several parameters for tuning and the existing results are limited to solve single objective optimization. This work pushes forward the research on BAS by providing one variant that releases the tuning parameters and is able to handle multi-objective optimization. This new approach applies normalization to simplify the original algorithm and uses a penalty function to exploit infeasible solutions with low constraint violation to solve the constraint optimization problem. Extensive experimental studies are carried out and the results reveal efficacy of the proposed approach to constraint handling.
منابع مشابه
BAS: Beetle Antennae Search Algorithm for Optimization Problems
Meta-heuristic algorithms have become very popular because of powerful performance on the optimization problem. A new algorithm called beetle antennae search algorithm (BAS) is proposed in the paper inspired by the searching behavior of longhorn beetles. The BAS algorithm imitates the function of antennae and the random walking mechanism of beetles in nature, and then two main steps of detectin...
متن کاملA FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS
The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...
متن کاملSelf-Adaptive Mechanism for Multi-objective Evolutionary Algorithms
Evolutionary algorithms can efficiently solve multi-objective optimization problems (MOPs) by obtaining diverse and near-optimal solution sets. However, the performance of multi-objective evolutionary algorithms (MOEAs) is often limited by the suitability of their corresponding parameter settings with respect to different optimization problems. The tuning of the parameters is a crucial task whi...
متن کاملThe Integrated Supply Chain of After-sales Services Model: A Multi-objective Scatter Search Optimization Approach
Abstract: In recent decades, high profits of extended warranty have caused that third-party firms consider it as a lucrative after-sales service. However, customers division in terms of risk aversion and effect of offering extended warranty on manufacturers’ basic warranty should be investigated through adjusting such services. Since risk-averse customers welcome extended warranty, while the cu...
متن کاملQuality Measures of Parameter Tuning for Aggregated Multi-Objective Temporal Planning
Parameter tuning is recognized today as a crucial ingredient when tackling an optimization problem. Several meta-optimization methods have been proposed to find the best parameter set for a given optimization algorithm and (set of) problem instances. When the objective of the optimization is some scalar quality of the solution given by the target algorithm, this quality is also used as the basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.02395 شماره
صفحات -
تاریخ انتشار 2017