Phenylalkylamine-sensitive calcium channels in osteoblast-like osteosarcoma cells. Characterization by ligand binding and single channel recordings.

نویسندگان

  • S E Guggino
  • J A Wagner
  • A M Snowman
  • L D Hester
  • B Sacktor
  • S H Snyder
چکیده

(-)-[3H]Desmethoxyverapamil ((-)-DMV) binds saturably to homogenates of the osteoblast-like cell lines UMR 106 and ROS 17/2.8 with KD values of 45 and 61 nM and Bmax values of 6.0 and 5 pmol/mg protein, respectively. Binding is stereoselective with (-)-DMV 8-10 times more potent than (+)-DMV. None of the dihydropyridine or benzothiazepine Ca2+ antagonists examined affect (-)-[3H]DMV binding. Monovalent cations such as Li+, Na+, and K+ inhibit (-)[3H]DMV binding in the 100-400 mM range. Divalent cations such as Ba2+, Sr2+, Ca2+, and Mg2+ are effective binding inhibitors in the 2-5 mM range. ROS 17/2.8 cells express a channel on the apical plasma membrane which conducts Ba2+ and Ca2+. With 110 mM BaCl2 or CaCl2 as charge carriers the single channel conductance is 3-5 picosiemens. In cell-excised patches the channel selects for Ba2+ over Na+ 3.3:1. In the absence of divalent ions the channel conducts Na+ ions with a single channel conductance of 13 picosiemens. This Na+ conductance decreases with physiological levels of Ca2+. The channel appears related to the (-)-[3H]DMV binding site, since its conductance is blocked by verapamil in a dose-dependent manner. Moreover, DMV blocks the channel stereoselectively with relative potencies of the isomers corresponding to their affinities for the binding site. The dihydropyridine drugs BAY K 8644 or (+)-202-791 do not affect channel opening. These binding and biophysical data indicate that osteoblast cells have a phenylalkylamine receptor associated with a Ca2+ channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solubilized proteins from carrot (Daucus carota L.) membranes bind calcium channel blockers and form calcium-permeable ion channels.

Calcium channels have been suggested to play a major role in the initiation of a large number of signal transduction processes in higher plant cells. However, molecular components of higher plant Ca2+ channels remain unidentified to date. Calcium channel blockers of the phenylalkylamine family and bepridil specifically inhibit Ca2+ influx into carrot (Daucus carota L.) cells. By using a phenyla...

متن کامل

Marrubenol interacts with the phenylalkylamine binding site of the L-type calcium channel.

Marrubenol inhibits contraction of rat arteries by blocking L-type calcium (Ca(2+)) channels in smooth muscle cells, but its interaction with binding sites for calcium antagonists had never been investigated. Competition binding studies indicated that marrubenol was a weak inhibitor of 1,4-dihydropyridine binding in membranes isolated from rat intestinal smooth muscle but completely displaced s...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

Dihydropyridine binding and Ca(2+)-channel characterization in clonal calcitonin-secreting cells.

1,4-Dihydropyridine-sensitive voltage-dependent Ca2+ channels play a crucial role in the extracellular Ca(2+)-sensing of calcitonin-secreting parafollicular cells of the thyroid (C-cells). To characterize the Ca2+ channels in C-cells, we studied 1,4-dihydropyridine binding and performed electrophysiological experiments with Ca(2+)-sensitive C-cells (rat C-cell line rMTC 44-2) in comparison with...

متن کامل

HIV-1 Tat inhibits human natural killer cell function by blocking L-type calcium channels.

Herein we show that functional phenylalkylamine-sensitive L-type calcium channels are expressed by human NK cells and are involved in the killing of tumor targets. Blocking of these channels by phenylalkylamine drugs does not affect effector/target cell binding but inhibits the release of serine esterases responsible for cytotoxicity. Interestingly, treatment of NK cells with HIV-1 Tat, which i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 263 21  شماره 

صفحات  -

تاریخ انتشار 1988