3 M ay 2 00 6 From triangulated categories to abelian categories – cluster tilting in a general framework Steffen Koenig and
نویسنده
چکیده
We put cluster tilting in a general framework by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal one-orthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
منابع مشابه
2 3 M ay 2 00 7 From triangulated categories to abelian categories – cluster tilting in a general framework
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
متن کامل0 Fe b 20 07 From triangulated categories to abelian categories – cluster tilting in a general framework Steffen
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
متن کاملGeneral Heart Construction on a Triangulated Category (I): Unifying t-Structures and Cluster Tilting Subcategories
In the paper of Keller and Reiten, it was shown that the quotient of a triangulated category (with some conditions) by a cluster tilting subcategory becomes an abelian category. After that, Koenig and Zhu showed in detail, how the abelian structure is given on this quotient category, in a more abstract setting. On the other hand, as is well known since 1980s, the heart of any tstructure is abel...
متن کاملAN INTRODUCTION TO HIGHER CLUSTER CATEGORIES
In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.
متن کاملTORSION CLASSES AND t-STRUCTURES IN HIGHER HOMOLOGICAL ALGEBRA
Higher homological algebra was introduced by Iyama. It is also known as n-homological algebra where n > 2 is a fixed integer, and it deals with n-cluster tilting subcategories of abelian categories. All short exact sequences in such a subcategory are split, but it has nice exact sequences with n + 2 objects. This was recently formalised by Jasso in his theory of n-abelian categories. There is a...
متن کامل