On some categorical-algebraic conditions in S-protomodular categories

نویسندگان

  • Nelson Martins-Ferreira
  • Andrea Montoli
  • Manuela Sobral
چکیده

In the context of semi-abelian categories, several additional conditions have been considered in order to obtain a closer group-like behavior. Among them are locally algebraic cartesian closedness and algebraic coherence. The recent notion of S-protomodular categories, whose main examples are the category of monoids and, more generally, categories of monoids with operations and Jónsson-Tarski varieties, raises a similar question: how to get a description of S-protomodular categories with a strong monoid-like behavior. In this paper we consider relative versions of the conditions mentioned above, in order to exhibit the parallelism with the “absolute” semi-abelian context and to obtain a hierarchy among S-protomodular categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the "Smith is Huq" Condition in S-Protomodular Categories

We study the so-called “Smith is Huq” condition in the context of Sprotomodular categories: two S-equivalence relations centralise each other if and only if their normalisations commute. We prove that this condition is satisfied by every category of monoids with operations equipped with the class S of Schreier split epimorphisms. Some consequences in terms of characterisation of internal struct...

متن کامل

ON ALGEBRAIC AND COALGEBRAIC CATEGORIES OF VARIETY-BASED TOPOLOGICAL SYSTEMS

Motivated by the recent study on categorical properties of latticevalued topology, the paper considers a generalization of the notion of topological system introduced by S. Vickers, providing an algebraic and a coalgebraic category of the new structures. As a result, the nature of the category   TopSys   of S. Vickers gets clari ed, and a metatheorem is stated, claiming that (latticevalu...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

Injectivity in a category: an overview on smallness conditions

Some of the so called smallness conditions in algebra as well as in category theory, are important and interesting for their own and also tightly related to injectivity, are essential boundedness, cogenerating set, and residual smallness. In this overview paper, we first try to refresh these smallness condition by giving the detailed proofs of the results mainly by Bernhard Banaschewski and W...

متن کامل

Semidirect Products and Split Short Five Lemma in Normal Categories

The categorical definition of semidirect products was introduced by D. Bourn and G. Janelidze in [2], where they proved that, in the category of groups, this notion coincides with the classical one. A characterization of pointed categories with categorical semidirect products was given in [3]. The existence of such products imply, in particular, that the category is protomodular, i.e. the Split...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017