Log-concavity of the Partition Function

نویسنده

  • STEPHEN DESALVO
چکیده

We prove that the partition function p(n) is log-concave for all n > 25. We then extend the results to resolve two related conjectures by Chen and one by Sun. The proofs are based on Lehmer’s estimates on the remainders of the Hardy–Ramanujan and the Rademacher series for p(n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brunn-minkowski Inequalities for Contingency Tables and Integer Flows

We establish approximate log-concavity for a wide family of combinatorially defined integer-valued functions. Examples include the number of non-negative integer matrices (contingency tables) with prescribed row and column sums (margins), as a function of the margins and the number of integer feasible flows in a network, as a function of the excesses at the vertices. As a corollary, we obtain a...

متن کامل

Concavity of reweighted Kikuchi approximation

We analyze a reweighted version of the Kikuchi approximation for estimating the log partition function of a product distribution defined over a region graph. We establish sufficient conditions for the concavity of our reweighted objective function in terms of weight assignments in the Kikuchi expansion, and show that a reweighted version of the sum product algorithm applied to the Kikuchi regio...

متن کامل

The proof of a conjecture of Simion for certain partitions

Simion has a conjecture concerning the number of lattice paths in a rectangular grid with the Ferrer's diagram of a partition removed. The conjecture concerns the unimodality of this number over a sequence of rectangles with the sum of the length and width being constant and with a constant partition. This paper demonstrates this unimodality if the partition is symmetric or if the Ferrer's diag...

متن کامل

Strong log-concavity is preserved by convolution

We review and formulate results concerning strong-log-concavity in both discrete and continuous settings. Although four different proofs of preservation of strong log-concavity are known in the discrete setting (where strong log-concavity is known as “ultra-log-concavity”), preservation of strong log-concavity under convolution has apparently not been investigated previously in the continuous c...

متن کامل

On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers

In this paper, we discuss the properties of the hyperfibonacci numbers F [r] n and hyperlucas numbers L [r] n . We investigate the log-concavity (log-convexity) of hyperfibonacci numbers and hyperlucas numbers. For example, we prove that {F [r] n }n≥1 is log-concave. In addition, we also study the log-concavity (log-convexity) of generalized hyperfibonacci numbers and hyperlucas numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014