RPGRIP1s with distinct neuronal localization and biochemical properties associate selectively with RanBP2 in amacrine neurons.

نویسندگان

  • P Castagnet
  • T Mavlyutov
  • Y Cai
  • F Zhong
  • P Ferreira
چکیده

RPGR and RPGRIP1 are molecular partners with vital roles in retinal function. Mutations in RPGR are implicated in heterogeneous retinal phenotypes, while those in RPGRIP1 lead to Leber congenital amaurosis. RPGR and RPGRIP1s differentially localize in photoreceptors among species. This may contribute to phenotype disparities among species bearing mutations in RPGR. However, it cannot account for the phenotype heterogeneity associated with RPGR- and RPGRIP1-linked mutations in the human. The existence of RPGRIP1 isoforms with distinct cellular, subcellular localizations and biochemical properties in the retina is shown. High mass RPGRIP1 isoforms, p175/p150, enriched in the outer segment (OS) compartment of photoreceptors are identified. The remaining isoforms are present across subcellular fractions, including nuclei and are soluble. The p175/p150 are predominantly sequestered in the cytoskeleton-insoluble fraction of OS and nuclei. In selective amacrine cells, and in the transformed photoreceptor line, 661W, RPGRIP1s localize at restricted foci to nuclear pore complexes and/or the vicinity of these. Among the nucleoporins, RPGRIP1 isoforms selectively associate in vivo with RanBP2 (Nup358). RPGRIP1s also decorate microtubules in 661W cells and occasionally form coiled-like inclusion bodies in the perikarya. These results support distinct but complementary functions of RPGRIP1 isoforms in cytoskeletal-mediated processes in photoreceptors and amacrine neurons, and may explain the Leber phenotype linked to RPGRIP1 mutations in humans. Moreover, the data implicate a role of RanBP2 in the pathogenesis of neuro(retino)pathies and as a docking station to mediate the nucleocytoplasmic shuttling of RPGRIP1s and their interaction with other partners in amacrine and 661W neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RanBP2 Modulates Cox11 and Hexokinase I Activities and Haploinsufficiency of RanBP2 Causes Deficits in Glucose Metabolism

The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification...

متن کامل

RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex.

RanBP2, a protein containing FG repeat motifs and four binding sites for the guanosine triphosphatase Ran, is localized at the cytoplasmic periphery of the nuclear pore complex (NPC) and is believed to play a critical role in nuclear protein import. We purified RanBP2 from rat liver nuclear envelopes and examined its structural and biochemical properties. Electron microscopy showed that RanBP2 ...

متن کامل

Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices

Introduction: Resveratrol (3,5,4-trihydroxystilbene) a non-flavonoid polyphenol found in some plants like grapes, peanuts and pomegranates, possesses a wide range of biological effects. Evidence indicates that resveratrol has beneficial effects on nervous system to induce neuroprotection. However, the cellular mechanisms of the effects are not fully determined. In the present study, the cellula...

متن کامل

Retinal neuron activity of ETS domain-binding sites in a nicotinic acetylcholine receptor gene cluster enhancer.

Nicotinic acetylcholine receptors (nAchRs) mediate amacrine to ganglion cell synaptic transmission in the developing mammalian retina. The clustered neuronal nAchRs subunit genes, alpha 3 and beta 4, are expressed in amacrine and ganglion cells where they are used to assemble functional receptor subtypes. The transcriptional mechanisms underlying expression of these subunits in retina are not y...

متن کامل

Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 12 15  شماره 

صفحات  -

تاریخ انتشار 2003