Aspect Extraction from Product Reviews Using Category Hierarchy Information
نویسندگان
چکیده
Aspect extraction is a task to abstract the common properties of objects from corpora discussing them, such as reviews of products. Recent work on aspect extraction is leveraging the hierarchical relationship between products and their categories. However, such effort focuses on the aspects of child categories but ignores those from parent categories. Hence, we propose an LDA-based generative topic model inducing the two-layer categorical information (CAT-LDA), to balance the aspects of both a parent category and its child categories. Our hypothesis is that child categories inherit aspects from parent categories, controlled by the hierarchy between them. Experimental results on 5 categories of Amazon.com products show that both common aspects of parent category and the individual aspects of subcategories can be extracted to align well with the common sense. We further evaluate the manually extracted aspects of 16 products, resulting in an average hit rate of 79.10%.
منابع مشابه
Mining Interesting Aspects of a Product using Aspect-based Opinion Mining from Product Reviews (RESEARCH NOTE)
As the internet and its applications are growing, E-commerce has become one of its rapid applications. Customers of E-commerce were provided with the opportunity to express their opinion about the product on the web as a text in the form of reviews. In the previous studies, mere founding sentiment from reviews was not helpful to get the exact opinion of the review. In this paper, we have used A...
متن کاملA Vector Space Approach for Aspect Based Sentiment Analysis
Vector representations for language have been shown to be useful in a number of Natural Language Processing (NLP) tasks. In this thesis, we aim to investigate the effectiveness of word vector representations for the research problem of Aspect-Based Sentiment Analysis (ABSA), which attempts to capture both semantic and sentiment information encoded in user generated content such as product revie...
متن کاملMining User Reviews: from Specification to Summarization
This paper proposes a method to extract product features from user reviews and generate a review summary. This method only relies on product specifications, which usually are easy to obtain. Other resources like segmenter, POS tagger or parser are not required. At feature extraction stage, multiple specifications are clustered to extend the vocabulary of product features. Hierarchy structure in...
متن کاملProduct Aspect Clustering by Incorporating Background Knowledge for Opinion Mining
Product aspect recognition is a key task in fine-grained opinion mining. Current methods primarily focus on the extraction of aspects from the product reviews. However, it is also important to cluster synonymous extracted aspects into the same category. In this paper, we focus on the problem of product aspect clustering. The primary challenge is to properly cluster and generalize aspects that h...
متن کاملDomain-Assisted Product Aspect Hierarchy Generation: Towards Hierarchical Organization of Unstructured Consumer Reviews
This paper presents a domain-assisted approach to organize various aspects of a product into a hierarchy by integrating domain knowledge (e.g., the product specifications), as well as consumer reviews. Based on the derived hierarchy, we generate a hierarchical organization of consumer reviews on various product aspects and aggregate consumer opinions on these aspects. With such organization, us...
متن کامل