Zigzag Persistence
نویسندگان
چکیده
We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop theoretical and algorithmic foundations with a view towards applications in topological statistics.
منابع مشابه
Applications of Zigzag Persistence to Topological Data Analysis
The theory of zigzag persistence is a substantial extension of persistent homology, and its development has enabled the investigation of several unexplored avenues in the area of topological data analysis. In this paper, we discuss three applications of zigzag persistence: topological bootstrapping, parameter thresholding, and the comparison of witness complexes.
متن کاملZigzag Persistence via Reflections and Transpositions
We introduce a new algorithm for computing zigzag persistence, designed in the same spirit as the standard persistence algorithm. Our algorithm reduces a single matrix, maintains an explicit set of chains encoding the persistent homology of the current zigzag, and updates it under simplex insertions and removals. The total worst-case running time matches the usual cubic bound. A noticeable diff...
متن کاملAlgebraic Stability of Zigzag Persistence Modules
The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of R-valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. In this paper, we establish an analogue of this algebraic stability theorem for z...
متن کاملStable Signatures for Dynamic Metric Spaces via Zigzag Persistent Homology
When studying flocking/swarming behaviors in animals one is interested in quantifying and comparing the dynamics of the clustering induced by the coalescence and disbanding of animals in different groups. Motivated by this, we study the problem of obtaining persistent homology based summaries of time-dependent metric data. Given a finite dynamic metric space (DMS), we construct the zigzag simpl...
متن کاملPersistence of Edge-State in Stacked Graphene and Nano-Graphene Materials
Nano-carbon materials are investigated intensively. In this paper, the edge-state in nanographene materials with zigzag edges is studied theoretically. In particular, while the inter-layer interactions are considered, we prove that edge states exist at the energy of the Dirac point in the doubly stacked nanographene, and in the case of the infinitely-wide lower layer case. This property applies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 10 شماره
صفحات -
تاریخ انتشار 2010