Reverse Na+/Ca2+ exchange contributes to glutamate-induced intracellular Ca2+ concentration increases in cultured rat forebrain neurons.
نویسندگان
چکیده
Activation of ionotropic glutamate receptors causes increases in intracellular Ca2+ concentration ([Ca2+]i) and intracellular Na+ concentration in neurons. It has been suggested that reversal of the plasma membrane Na+/Ca2+ exchanger (NCE) may account in part for the rise in [Ca2+]i. Recently, KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate) was reported to selectively inhibit the reverse mode of the NCE in non-neuronal cells. We investigated the effects of KB-R7943 on glutamate-stimulated increases in [Ca2+]i. In cultured rat forebrain neurons loaded with indo-1 acetoxymethyl ester, KB-R7943 inhibited the reverse mode of NCE (IC50 = 0.7 microM). When tested against kainate- (100 microM), N-methyl-D-aspartate- (30 microM), glutamate- (3 microM), or KCl- (50 mM) induced [Ca2+]i transients (15 sec, in the presence of Na+ and Ca2+), KB-R7943 inhibited these transients with IC50 values of 6. 6, 8.2, 5.2, and 2.9 microM, respectively. [Ca2+]i increases caused by a higher concentration of glutamate (100 microM) also were inhibited by KB-R7943 (10 microM). However, KB-R7943 had no effect on peak [Ca2+]i changes caused by prolonged application of glutamate and did not inhibit glutamate-induced neuronal injury. KB-R7943 did not inhibit N-methyl-D-aspartate- or kainate-induced whole-cell currents, nor did it substantially inhibit voltage-sensitive Ca2+ currents, excluding a direct inhibition of these ion channels. These results suggest that reverse NCE contributes to the immediate rise in [Ca2+]i resulting from glutamate receptor activation. However, reverse NCE becomes less important as the stimulus time is increased, and Ca2+ entry by this route is not critical for the expression of excitotoxic injury.
منابع مشابه
Reverse mode Na+/Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons.
The importance of Na+/Ca2+ exchangers in the regulation of the physiological and pathological functions of the nervous system has been widely recognized. In this study, we used primary cultured E14.5 cortical neurons as a model system to study the possible roles of the reverse mode Na+/Ca2+ exchange activity in neurotransmission. Using RT-PCR, several exchanger isoforms, ncx1, ncx3 and nckx2-4 ...
متن کاملMitochondria and Na+/Ca2+ exchange buffer glutamate-induced calcium loads in cultured cortical neurons.
Utilizing Indo-1 microfluorimetry, we have investigated the role of mitochondria and Na+/Ca2+ exchange in buffering calcium loads induced by glutamate stimulation or depolarization of cultured rat forebrain neurons. A 15 sec pulse of 3 microM glutamate or 50 mM potassium with veratridine was followed by a 2 min wash with a solution containing either Na(+)-free buffer or the mitochondrial uncoup...
متن کاملPerturbation of intracellular calcium and hydrogen ion regulation in cultured mouse hippocampal neurons by reduction of the sodium ion concentration gradient.
Na(+)-Ca2+ exchange has been identified as a mechanism for regulation of intracellular Ca ion concentration ([Ca2+]i) in neurons of invertebrates and vertebrates, but for mammalian central neurons its role in restoration of resting [Ca2+]i after transient increases induced by stimulation has been less clear. We have examined the recovery of [Ca2+]i following K+ depolarization and glutamate rece...
متن کاملP30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain
Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...
متن کاملBuckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway
Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 53 4 شماره
صفحات -
تاریخ انتشار 1998